مقایسه اثر سافرانال و کروسین بر سطح سرمی آدیپونکتین، پروفایل لیپید و گلوکز در موش های صحرایی سالم و مبتلا به دیابت نوع یک

نویسنده

دانشگاه آزاد اسلامی مشهد

چکیده

زمینه و هدف: دیابت از شایع­ترین بیماری­های غدد درون­ریز است که با اختلال در متابولیسم گلوکز و چربی­ها همراه است. آدیپونکتین پروتئین اختصاصی مترشحه از بافت چربی است که می­تواند بر روند پیشرفت دیابت موثر باشد. با توجه به اثرات محافظتی کروسین به­عنوان یک ضد التهاب و آنتی­اکسیدانی قوی، هدف از این مطالعه تعیین اثر کروسین بر سطح سرمی آدیپونکتین، پروفایل لیپید و گلوکز در مدل موش­های صحرایی دیابتی نوع یک می­باشد.
مواد و روش­ها: در این مطالعه تجربی، 28 سر موش صحرایی نر نژاد ویستار به 4 گروه­ مساوی تقسیم شدند. گروه­های شاهد، شاهد دیابتی و دو گروه­­ دیابتی تحت تیمار با کروسین (غلظت­های 50 و 100 میلی­گرم بر کیلوگرم). دیابت در گروه­های شاهد دیابتی و دیابتی تحت تیمار، با یک­بار تزریق داخل صفاقی آلوکسان القاء شد. کروسین به مدت 25 روز به­صورت داخل صفاقی به گروه­های دیابتی تحت تیمار تزریق شد. به حیوانات گروه­های شاهد و شاهد دیابتی محلول سالین تزریق شد. در پایان دوره تیمار، سطح سرمی آدیپونکتین، LDL، HDL، تری گلیسرید، کلسترول تام و گلوکز توسط روش الایزا اندازه­گیری شد.
نتایج: در مقایسه با گروه شاهد دیابتی، سطح سرمی LDL، تری­گلیسرید، کلسترول تام و گلوکز در گروه­های دیابتی تیمار شده با غلظت­های 50 و 100 میلی­گرم بر کیلوگرم کروسین به­صورت وابسته به دوز کاهش، همچنین آدیپونکتین و HDL به طور معنی­داری افزایش یافت (05/0>p < /span>).
نتیجه­گیری: تجویز کروسین به­صورت وابسته به دوز از طریق افزایش سطح سرمی آدیپونکتین و کاهش قند خون در تنظیم متابولیسم چربی­ها نقش دارد.
کلمات کلیدی: دیابت، کروسین، آدیپونکتین، پروفایل لیپیدی، موش صحرایی
 

کلیدواژه‌ها

عنوان مقاله [English]

Comparing the Effect of Safranal and Crocin on Serum Levels of Adiponectin, Lipid Profile and Glucose in Healthy and Type One Diabetic Rats

چکیده [English]

Background and Objective: Diabetes is the most common endocrine disease that is associated with impaired glucose and lipid metabolism. Adiponectin is a specific protein secreted from adipose tissue that can affect diabetes progression. Considering the protective effects of crocin, as a potent anti-inflammatory and powerful antioxidant, the aim of this study was to determine the effect of crocin on serum levels of adiponectin, lipid profile and glucose in type one diabetic rat’s model.

Materials and Methods: In this experimental study, 28 wistar male rats were allocated into 4 equal groups. Groups of control, diabetic control and two treated diabetic group with crocin (concentrations of 50 and 100 mg/kg). The diabetes in diabetic control and treated diabetic groups was induced using an intraperitoneal injection of alloxan. Crocin was intraperitoneally injected into treated diabetic groups for 25 days. Saline solution was injected to the animals of control and diabetic control groups. At the end of treatment period, the serum levels of adiponectin, LDL, HDL, triglyceride, total cholesterol and glucose was measured by ELISA.

Results: Compared to diabetic control group < /span>, serum levels of LDL, triglycerides, total cholesterol and glucose in diabetic groups treated with 50 and 100 mg/kg of crocin dose-dependent manner decreased, also adiponectin and HDL significantly increased (p<0.05).
Conclusion: Dose dependent administration of crocin by increases adiponectin and decreases blood glucose serum levels, plays a role in regulating lipid metabolism

کلیدواژه‌ها [English]

  • Key words: Diabetes
  • Crocin
  • Adiponectin
  • Lipid profile
  • Rat
1. Melendez-Ramirez LY, Richards RJ, Cefalu WT. Complications of Type 1 Diabetes. Endocrinol Metab Clin North Am. 2010; 39(3): 625-40. 2. Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands JL, Smit A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc Diabetol. 2008; 7: 29. 3. Chen J, Lu Y, Lee C, Li R, Leiter EH, Mathews CE. Commonalities of genetic resistance to spontaneous autoimmune and free radical-mediated diabetes. ‎Free Radic Biol Med. 2008; 45(9): 1263-70. 4. Caselli C. Role of adiponectin system in insulin resistance. Mol Gen Metab. 2014; 113(3): 155-160. 5. Gable DR, Hurel SJ, Humphries SE. Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. Atherosclerosis. 2006; 188(2): 231-44. 6. Gil-Campos M, Canete R, Gil A. Adiponectin, the mis sing link in insulin resistance and obesity. Clin Nutr. 2004; 23(5): 963-74. 7. Liu Y, Sweeney G. Adiponectin action in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 2014; 28(1): 33-41. 8. Santos-Gallego CG, Badimon JJ, Rosenson RS. Beginning to Understand High-Density Lipoproteins. Endocrinol Metab Clin North Am. 2014; 43(4): 913-47. 9. Connelly MA, Shalaurova I, Otvos JD. High-density lipoprotein and inflammation in cardiovascular disease. Transl Res. 2016; 173: 7-18. 10. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014; 63(12): 1469-79. 11. Suji G, Sivakami S. Approaches to the treatment of diabetes mellitus: an overview. Cell Mol Biol. 2003; 49(4): 635-9. 12. Srivastava R, Ahmed H, Dixit RK, Dharamveer, Saraf SA. Crocus sativus L.: A comprehensive review. Pharmacogn Rev. 2010; 4(8): 200-8. 13. Vakili A, Eianali MR, Bandegi AR. The protective effects of Saffron against the oxidative damage in a transient model of focal cerebral ischemia in rats. Tehran Univ Med J. 2011; 69(7): 405-12. [Persian] 14. Bakhtiary Z, Shahrooz R, Ahmadi A, Malekinejad H, Mostafavi M. Study of protective effects of crocin on testicular histomorphometryand serological parameters incyclophosphamide on treated adult mice. Urmia Med J. 2014; 25(7): 663-73. [Persian] 15. Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacog Mag. 2009; 5(20): 419-24. 16. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol Toxicol. 2002; 2: 7-15. 17. Samadi H, Javadi S, Asri S. Evaluation of the effects of crocin on the serum levels of glucose, insulin, urea, creatinine and β2m in healthy and streptozotocin-induced diabetic rats. Urmia Med J. 2015; 26(9(: 802-12. [Persian] 18. Yaribeygi H, Mohammadi M. Protective Effect of Crocin on Kidney Performance in Chronic Uncontrolled Hyperglycemia-Induced Nephropathy in Rat. ZUMS Journal. 2017; 25(109): 36-49. [Persian] 19. He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005; 77(8): 907-21. 20. Shirali S, Bathayi SZ, Nakhjavani M, Ashoori MR. Effects of saffron (Crocus Sativus L.) aqueous extract on serum biochemical factors in streptozotocin-induced diabetic rats. Iran J Med Aromatic Plants. 2012; 28(2): 293-308. [Persian] 21. Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007; 14(9): 633-6. 22. Sadoughi SD. The effect of curcumin on the hormones of pituitary-adrenal axis and renal indices in alloxan-induced diabetic rats. Daneshvarmed. 2017; 24(126): 79-90. [Persian] 23. Santos GJ, Oliveira CAM, Boschero AC, Rezende LF. CNTF protects MIN6 cells against apoptosis induced by alloxan and IL-1β through downregulation of the AMPK pathway. Cell Signal. 2011; 23(10): 1669-76. 24. Oryan A, Hashemnia M, Hamidi A, Mohammadalipour A. Effects of hydro-ethanol extract of Citrullus colocynthis on blood glucose levels and pathology of organs in alloxan-induced diabetic rats. Asian Pac J Trop Dis. 2014; 4(2): 125-130. 25. Sadoughi SD. Investigation the Effect of Curcumin on the Hormones of Pituitary-Ovarian Axis in Alloxan-induced Diabetic Rats. J Ardabil Univ Med Sci. 2016; 16(4): 441-51. [Persian] 26. Hemmati M, Asghari S, Zohoori E. Study of changes in adiponectin level in streptozotocin-induced diabetic rats treated with aqueous extract of berberis vulgaris. J Birjand Univ Med Sci. 2014; 21(1): 27-34. [Persian] 27. Hemmati M, Asghari S, Zohoori E. Effects of Alcoholic and Aqueous Extract of Barberry, Jujube and Saffron Petals on Serum Level of Adiponectin and Lipid Profile in Diabetic Rats. Iran J Endocrinol Metabol. 2015; 16(5): 329-37. [Persian] 28. Omidi G, Salehi I, Moradkhani Sh. The effect of Commiphora mukul of hydro alcoholic extract on cardiac enzymes, lipid profile and blood glucose in diabetic male rats. J Shahid Sadoughi Univ Med Sci. 2015; 23(1): 1816-25. [Persian] 29. Hosseini S, Nik bakht H, Azarbayjani M. The Effect of Aqua Extract of Saffron with Resistance Training on Glycemic Indexes of Streptozotocin Induced Diabetic Rats. Armaghane danesh. 2013; 18(4): 284-94. [Persian] 30. Gainer JL and Jones JR. The use of crocetin in experimental atherosclerosis. Experientia. 1975; 31(5): 548-9. 31. Sheng L, Qian Z, Zheng S and Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol. 2006; 543(1-3): 116-22. 32. Xi L, Qian Z, Xu G, Zheng S, Sun S, Wen N, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem. 2007; 18(1): 64-72. 33. He SY, Qian ZY, Wen N, Tang FT, Xu GL, Zhou CH. Influence of crocetin on experimental atherosclerosis in hyperlipidemic-diet quails. Eur J Pharmacol. 2007; 554(2-3): 191-5. 34. Eizadi M, Nazem F, Behboodi L, Khorshidi D. Correlation between serum adiponectin level and blood glucose concentration in adult asthmatic patients. Feyz. 2011; 15(4): 345-51. [Persian] 35. Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes Best Pract Res Clin Endocrinol Metab. 2014; 28(1): 43-58. 36. Sahraian A, Jelodar S, Javid Z, Mowla A, Ahmadzadeh L. Study the effects of saffron on depression and lipid profiles: A double blind comparative study. Asian J Psychiatr. 2016; 22: 174-6.