ارزیابی ایمنی زایی Nef-MPER-V3 ویروس HIV-1 واجد پپتید نفوذ پذیر کننده سلولی LDP12 در موش BALB/c

نویسندگان

1 دانشجوی دکتری تخصصی، گروه زیست شناسی سلولی و مولکولی، دانشکده علوم وفناوری های نوین، واحد علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه زیست شناسی سلولی و مولکولی، دانشکده علوم و فناوری های نوین، واحد علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار بخش هپاتیت، ایدزو ویروس های منتقله از خون، انستیتو پاستور، تهران، ایران

4 استاد بخش هپاتیت، ایدزو ویروس های منتقله از خون، انستیتو پاستور، تهران، ایران

چکیده

مقدمه: برخلاف موفقیت های به دست آمده در زمینه تولید داروهای ضدویروسی، درحال حاضر هیچ گونه واکسن موثری علیه ویروس HIV شناسایی نشده است. دستیابی به یک واکسن موثر بر علیه این ویروس، نیازمند پاسخ ایمنی قوی همورال و سلولی است. هدف از مطالعه حاضر ارزیابی ایمنی زایی پروتئین نوترکیب LDP12-Nef-MPER-V3 در موش BALB/c، در راستای القای پاسخ های موثر بود.
روش کار: در مطالعه حاضر، به منظور ایمنی زایی از 55 موش ماده در 11 گروه پنج تایی استفاده شد. تزریق ها سه مرتبه با فاصله زمانی سه هفته، به صورت زیر جلدی انجام شد. دو هفته بعد از آخرین تزریق، پاسخ های ایمنی همورال و سلولی به ترتیب در سرم و سلول های طحال موش ها با استفاده از روش الایزا سنجیده شد. در نهایت داده ها با آزمون من-ویتنی یو  ارزیابی شدند.
یافته ها:  اگرچه میزان ترشح آنتی بادی اختصاصی با تیتراسیون های مختلف در تمامی گروه های اصلی مشاهده شده است، ولی تیتر آنتی بادی در گروه های دریافت کننده آنتی ژن واجد پپتید LDP12 به همراه ادجوانت نسبت به گروه کنترل بالاتر بود (p=0.045). همچنین، ایزوتایپ غالب در گروه ایمن شده با LDP12  به همراه Hsp27 از نوع IgG2a (شاخص تحریک پاسخ Th1) بود.
نتیجه گیری: داده های پژوهش حاضر بیانگر قابلیت القای تحریک سیستم ایمنی توسط رژیم تزریقی LDP12-Nef-MPER-V3  به همراه ادجوانتHp91 است که امکان دستیابی به یک واکسن موثر بر علیه HIV را فراهم می کند.

کلیدواژه‌ها

عنوان مقاله [English]

Immunological Assessment of HIV-1 Nef-MPER-V3 Harboring LDP12 Penetrating Peptide in BALB/c Mice

نویسندگان [English]

  • Sahar Sabaghzadeh 1
  • Fatemeh Rohollah 2
  • Seyed Mehdi Sadat 3
  • Azam Bolhassani 4

1 Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

2 Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

3 Department of Hepatitis, AIDS and Blood borne diseases, Pasteur Institute of Iran, Tehran, Iran

4 Department of Hepatitis, AIDS and Blood borne diseases, Pasteur Institute of Iran, Tehran, Iran

چکیده [English]

Introduction: In spite of the improvements in developing antiretroviral treatments, there are no approved HIV vaccines. To achieve an effective vaccine against HIV-1 requires induction of strong humoral and cellular immune responses, so developing an effectual vaccine is required. The aim of this study was the immunological assessment of HIV-1 Nef-MPER-V3 harboring LDP12 penetrating peptide in BALB/c mice in order to induce effective immune responses.
Materials & Methods: In the current study, presenting 55 female mice were utilized for immunization with LDP12-Nef-
MPER-V3. The mice were divided into 11 groups with 5 mice each group. Immunizations were performed three times at three week intervals and subcutaneously in a volume of 100 μl per mouse. Two weeks after final injection, humoral and cellular immune responses were evaluated in blood serum and splenocytes respectively, by using ELISA method. Finally, the data analysis was performed, using Mann-Whitney u test.
Results: Although the level of total antibody production was observed in all main groups with different titrations, but the antibody level was higher in the mice groups that injected with the LDP12 antigen with adjuvants immunity than in the control group (p=0.045). Also, IgG2a was the predominant isotype (Th1-biased response) in mice immunized group that had LDP12 antigen with Hsp27 adjuvant.
Conclusion: The data indicated that the high immune system stimulating capabilities of LDP12-Nef-MPER-V3 injection regime accompanied by Hp91 adjuvant, which provides the potential for an efficient HIV vaccine

کلیدواژه‌ها [English]

  • Vaccine
  • HIV-1
  • LDP12
  • Immunization
  • BALB/c
  • Nef-MPER-V3
1. UNAIDS, 2019. Global HIV & AIDS statistics. http://www.unaids.org/en/resources/factsheet. 2. Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol. 2015; 16(6): 571-576. 3. Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001; 19: 1173-1176. 4. Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins usingcell penetrating peptides. Pept. 2016; 16: 1-46. 5. Lee JE, Lim HJ. LDP12, a novel cell-permeable peptide derived from L1 capsid protein of the human papillomavirus. Mol Biol Rep. 2012; 39:1079–1086. 6. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target Sci. 2009; 326 (5950): 285-9. 7. Lai RPJ, Yan J, Heeney J, McClure MO, Go¨ ttlinger H, Luban J, et al. Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41. PLoS Pathog. 2011; 7(12): 1-15. 8. Garcia JV, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nat. 1991; 350: 508-511. 9. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membraneproximal CD4 cytoplasmic domain. Cell. 1994; 76(5): 853-864. 10. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL, el al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell. 1999; 97(1): 63-73. 11. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med. 1996; 2(3): 338-342. 12. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell. 2002; 111(6): 853-866. 13. Baur AS, Sawai ET, Dazin P, Fantl WJ, Cheng-Mayer C, Peterlin BM. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity. 1994; 1(5): 373-384. 14. Schrager JA, Marsh JW. HIV-1 Nef increases T cell activation in astimulus-dependent manner. Proc Natl Acad Sci U S A. 1999; 96(14): 8167-8172. 15. Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC. A role for natural simian immunodeficiency virus and human immunodeficiency virus type1 nef alleles in lymphocyte activation. J Virol. 1997; 71(8): 6094-6099. 16. Simmons A, Aluvihare V, McMichael A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity. 2001; 14(6): 763-777. 17. Foster JL, Garcia JV. HIV-1 Nef: at the crossroads. Retrovirology. 2008 :84(5):1-13. 18. Geyer M, Fackler OT, Peterlin BM. Structure-function relationships in HIV-1 Nef. EMBO Rep. 2001; 2(7): 580-85. 19. Laguette, N. Bregnard, Ch. Benichou, S. Basmaciogullari, S. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins. Mol aspects Med. 2010; 31(5):418-433. 20. Lindwasser, OW. Chaudhuri, R. Bonifacino, JS. Mechanisms of CD4 downrwgulation by the Nef and Vpu proteins of primate immunodeficiency viruses. Curr Mol Med. 2007; 7(2):171-184. 21. Visciano ML, Diomede L, Tagliamonte M, Tornesello ML, Asti V, Bomsel M, et al. Generation of HIV-1 virus-like particles expressing different HIV-1 glycoproteins. Vaccine. 2011; 29(31): 4903-12. 22. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target Sci. 2009; 326 (5950): 285-9. 23. Gorny MK, Williams C, Volsky B, Revesz K, Wang XH, Burda S, et al. Cross-clade neutralizing activity of human anti-V3 monoclonal antibodies derived from the cells of individuals infected with non-B clades of human immunodeficiency virus type 1. J. Virol. 2006; 80 (14):6865–72. 24. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One. 2010; 5(1): e8805. 25. Montero M, Houten NEV, Wang X, Scott JK. The Membrane-Proximal External Region of the Human Immunodeficiency Virus Type 1 Envelope: Dominant Site of Antibody Neutralization and Target for Vaccine Design. Microbiol Mol Biol Rev. 2008; 72(1): 54-84. 26. Munoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 1999; 73(7): 6089-6092. 27. Salzwedel K, West JT, Hunter E. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 1999; 73(3): 2469-2480. 28. Sirois, S. Sing, T. Chou, KC. HIV-1 gp120 V3 loop for structure-based drug design. Curr Protein Pept Sc. 2005; 6(5): 413-422. 29. M.Andrianov, A. V,Anishchenko, I. V.Tuzikov, A. Discovery of novel promising targets for anti-AIDS drug developments by computer modeling: application to the HIV-1 gh120 V3 loop. J. Chem. Inf. Model. 2011; 51(10):2760-67. 30. Zwick, MB. Jensen, R. Church, S. et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J. Virol. 2005; 79(2):1252-1261. 31. Zwick, MB. Labrijin, AF. Wang, M. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 2001; 75(22):10892-10905. 32. Van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology. 2013; 435(1):46-56. 33. Sabaghzadeh S, Sadat SM, Rohollah F, Bolhassani A. Effective delivery of Nef-MPER-V3 fusion protein using LDP12 cell penetrating peptide for development of preventive/therapeutic HIV-1 vaccine. Protein Peptide Lett. 2020 May 4. doi: 10.2174/092986652766620050412140. 34. Faghih A, Sadat SM, Bolhassani A, Irani SH. Cloning, Optimization of Expression Condition and Purification of the Recombinant HIV-1 Nef- MPER-V3 Protein in Prokaryotic Expression System. Pars J. Med. Sci.2019;17(2):46-53. 35. Sadat SM, Zabihollahi R, Javadi F, Vahabpour R, Siadat SD, Azadmanesh K, et al. Immunological evaluation of recombinant HIV1 virions with novel adjuvants in BALB/c mice model. J Mazandaran Univ Med Sci. 2011; 21(84):13-21. 36. Gray EG, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol. 2016; 17: 104-109. 37. Walker BD, Ahmed R, Plotkin S. Moving ahead an HIV vaccine: use both arms to beat HIV. Nat Med. 2011; 17: 1194-5. 38. Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vacc. 2015; 33: 1-9. 39. Tohidi F, Sadat SM, Bolhassani A, Yaghobi R. Immunological Evaluation of HIV-1 VLP Harboring MPER-V3 in BALB/c Mice Model. Patho Res. 2018; 21(2): 95-100. 40. Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016; 4(5): 528-34. 41. Kwon S, Kwak A, Shin H, Choi S, Kim S, Lim HJ. Application of a novel cell-permeable peptide-driven protein delivery in mouse blastocysts. Reproduction. 2013; 146: 145-153. 42. Reguzova A, Antonets D, Karpenko L, Ilyichev A, Maksyutov R, Bazhan S. Design and evaluation of optimized artificial HIV-1 Poly-T cell-epitope immunogens. PloS One. 2015; 10(3): e0116412. 43. Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines. 2006; 5(4): 579-95. 44. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, Louder MK, et al. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med. 2007; 13(9): 1032-1034. 45. Stamatatos L, Morris L, Burton DR, Mascola JR. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?. Nat Med. 2009; 15(8): 866-70. 46. Fomsgaard A, Nielsen HV, Bryder K, Nielsen C, Machuka R, Bruun L, et al. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the Hepatitis B surface antigen. Scand. J. Immunol. 1998; 47: 289-295. 47. Sirois S, Touaibia M, Chou KC, Roy R. Glycosylation of HIV-1 gp120 V3 Loop: Towards the Rational Design of a Synthetic Carbohydrate Vaccine. Curr. Med. Chem. 2007; 14: 3232-3242. 48. Kestler HWd, Ringler DJ, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991; 65(4): 651–62. 49. Svanholm C, Lowenadler B, Wigzell H. Amplification of T-cell and antibody responses in DNA-based immunization with HIV-1 Nef by co-injection with a GM-CSF expression vector. Scand. J. Immunol. 1997; 46: 298-303. 50. Cosma A, Nagaraj R, Bühler S, Hinkula J, Busch DH, Sutter G, et al. Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals. Vacc. 2003; 22: 21-29.