تاثیر کروسین بر میزان بیان miRNA-15a در سلول های B ترانسفورم شده با ویروس اپشتین بار

نویسندگان

1 داشجوی دکترای،گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاداسلامی، جهرم، ایران

2 مرکز تحقیقات روماتولوژی گلستان،بیمارستان صیاد شیرازی گلستان،دانشگاه علوم پزشکی گلستان،گرگان،ایران

3 استاد، گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران

4 مرکز تحقیقات میکروب شناسی،بیمارستان نمازی،دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

مقدمه: ‌با وجود پیشرفت‌های چشمگیر در تشخیص و درمان، سرطان یکی از عوامل اصلی مرگ و میر در دنیا محسوب می‌شود. کروسین به عنوان کاروتنوئید اصلی موجود در زعفران، اثرات ضد توموری قوی در تومورهای پستان، لوزالمعده و معده از خود نشان داده است. با این حال، هنوز اثرات ضد لنفومای کروسین به ویژه در لنفوم‌های سلول B مشخص نیست. هدف از مطالعه حاضر، بررسی اثر سایتوتوکسیسیتی کروسین روی سلول‌های B ترانسفورم شده با ویروس اپشتین بار لنفوم بود.
روش کار: در این مطالعه، تاثیر کروسین بر رده سلولی  CO 88BV59-1 LCL که نوعی لنفوم B آلوده به ویروس اپشتاین بار است مورد بررسی قرار گرفت. سلول‌ها به مدت سه روز با کروسین 0.2  تا 200 میکرومولار تحت درمان قرار گرفتند. میزان زنده مانی سلول و آپوپتوز به ترتیب با استفاده از روش MTT و فلوسیتومتری مورد بررسی قرار گرفتند. همچنین بیان miRNA-15a3p  و miRNA-15a5p  توسط Real-Time PCR تعیین شد.
یافته‌ها: کروسین به طور قابل توجهی تکثیر و آپوپتوز ناشی از سلول‌های آلوده به ویروس به روش وابسته به دوز و زمان را مهار کرد (p<0.05). در سلول‌های تیمار شده با کروسین تغییر معناداری در میزان بیان miRNA-15a3p  و miRNA-15a5p  در مقایسه با سلول‌های تیمار نشده مشاهده نشد  (p>0.05).
نتیجه‌گیری:‌ نتایج نشان داد که با توجه با تاثیر کروسین در کاهش زنده مانی و افزایش آپوپتوز سلول های لنفومی و همچنین عدم تغییر در میزان بیان  miRNA-15a می‌توان از آن به عنوان یک کاندید درمانی در درمان لنفوم سلول B مرتبط با ویروس اپشتاین بار در نظر گرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Crocin on miRNA-15a expression in EBV infected transformed B cell

نویسندگان [English]

  • Abdolreza Sotoodeh Jahromi 1
  • Maliheh Moradzadeh 2
  • Mohammad Kargar 3
  • Farshid Kafilzadeh 3
  • Marzieh Jamalidoust 4

1 PhD student, Department of microbiology, Jahrom branch, Islamic Azad University, Jahrom, Iran

2 Golestan rheumatolgy research cener, Sayad shirazi hospital, Golestan University of Medical Sciences, Gorgan, Iran

3 Professor, Department of microbiology, Jahrom branch, Islamic Azad University, Jahrom, Iran

4 Clinical microbiology research center, Namazi hospital, Shiraz University of Medical Sciences, Shiraz, Iran

چکیده [English]

Introduction: Despite advances in diagnosis and therapy, cancer is still the main cause of death worldwide. Crocin, the major carotenoid in saffron, exhibits potent anti-tumor effects in breast, pancreas, and gastric tumors. However, the anti-lymphoma effects of crocin are still unclear, especially in B cell lymphomas. The present study aimed to evaluate the cytotoxic effects of crocin on EBV-infected transformed B cell.
Materials and Methods: In this study, the effects of crocin on CO 88BV59-1 LCL – an Epstein‐Barr‐Virus (EBV) Infected
Transformed B cell was examined. The cells were treated with crocin (0.2-200 μM), for 3 days. Cell viability and apoptosis were evaluated using MTT, and flow cytometry techniques respectively. Also, miRNA-15a genes expression were determined by real-time PCR.
Results: Crocin significantly inhibited proliferation and induced apoptosis in EBV infected cell-line in a dose and time-dependent manner (P<0.05). There was no significant change in the expression of miRNA-15a3p and miRNA-15a5p in treated cells compared to untreated cells (P>0.05).
Conclusions:  The results showed that due to the effect of crocin in reducing the survival and increasing apoptosis of lymphoma cells and also due to the lack of change in the expression of miRNA-15a, it can be considered as a therapeutic candidate in the treatment of EBV- associated B cell lymphoma.

کلیدواژه‌ها [English]

  • Apoptosis
  • B Cell Lymphoma
  • Crocin
References: 1. Cohen JI. Epstein–Barr virus infection. New England Journal of Medicine. 2000;343(7):481-92. 2. Nijland ML, Kersten MJ, Pals ST, Bemelman FJ, ten Berge IJ. Epstein-Barr Virus–Positive Posttransplant Lymphoproliferative Disease After Solid Organ Transplantation: Pathogenesis, Clinical Manifestations, Diagnosis, and Management. Transplantation direct. 2016;2(1). 3. Sakamoto K, Sekizuka T, Uehara T, Hishima T, Mine S, Fukumoto H, et al. Next‐generation sequencing of miRNAs in clinical samples of Epstein–Barr virus‐associated B‐cell lymphomas. Cancer medicine. 2017;6(3):605-18. 4. Hammond SM. An overview of microRNAs. Advanced drug delivery reviews. 2015;87:3-14. 5. Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787-98. 6. Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes & development. 2011;25(2):125-30. 7. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature genetics. 2007;39(3):380. 8. Berindan‐Neagoe I, Monroig PdC, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA: a cancer journal for clinicians. 2014;64(5):311-36. 9. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences. 2006;103(33):12481-6. 10. Yoshino H, Yonemori M, Miyamoto K, Tatarano S, Kofuji S, Nohata N, et al. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget. 2017;8(13):20881. 11. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, et al. miR‐15b and miR‐16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. International journal of cancer. 2008;123(2):372-9. 12. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences. 2005;102(39):13944-9. 13. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood. 1998;91(9):3379-89. 14. Huang E, Liu R, Chu Y. miRNA-15a/16: as tumor suppressors and more. Future oncology. 2015;11(16):2351-63. 15. Fu Q, He C, Mao Z-r. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. Journal of Zhejiang University SCIENCE B. 2013;14(1):8-24. 16. Lanzkowsky P, Lipton JM, Fish JD. Lanzkowsky's manual of pediatric hematology and oncology: Academic Press; 2016. 17. Funch DP, Walker AM, Schneider G, Ziyadeh NJ, Pescovitz MD. Ganciclovir and acyclovir reduce the risk of post‐transplant lymphoproliferative disorder in renal transplant recipients. American Journal of Transplantation. 2005;5(12):2894-900. 18. Østensen AB, Sanengen T, Holter E, Line PD, Almaas R. No effect of treatment with intravenous ganciclovir on Epstein‐Barr virus viremia demonstrated after pediatric liver transplantation. Pediatric transplantation. 2017;21(6):e13010. 19. Piccin A, Di Pierro AM, Canzian L, Primerano M, Corvetta D, Negri G, et al. Platelet gel: a new therapeutic tool with great potential. Blood transfusion = Trasfusione del sangue. 2017;15(4):333-40. 20. Franke AJ, Bishnoi R, Bajwa R, Skelton WP, Patel N, Slayton WB, et al. Association of allograft rejection with reduction of immunosuppression for post-transplant lymphoproliferative disorder: Analysis of a 20-year single-institutional experience. American Society of Clinical Oncology; 2017. 21. Rezaee Khorasany A, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iranian Journal of Basic Medical Sciences. 2016;19(5):455-69. 22. Yao C, Liu B-B, Qian X-D, Li L-Q, Cao H-B, Guo Q-S, et al. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. OncoTargets and Therapy. 2018;Volume 11:2017-28. 23. Mousavi SH, Vazifedan V, Sargolzaee J, Soleymanifard S, Fani Pakdel A. Study of crocin & radiotherapy-induced cytotoxicity and apoptosis in the head and neck cancer (HN-5) cell line. Iranian Journal of Pharmaceutical Research. 2017;16(1):230-7. 24. Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomed Pharmacother. 2017;94:307-16. 25. Zhuang X, Dong A, Wang R, Shi A. Crocetin treatment inhibits proliferation of colon cancer cells through down-regulation of genes involved in the inflammation. Saudi Journal of Biological Sciences. 2018;25(8):1767-71. 26. Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food and Chemical Toxicology. 2008;46(11):3443-7. 27. Rahiman N, Akaberi M, Sahebkar A, Emami SA, Tayarani-Najaran Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvascular research. 2018;118:82-9. 28. Li Y, Liu S, Zhang F, Jiang P, Wu X, Liang Y. Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract. International journal of clinical and experimental medicine. 2015;8(2):2405. 29. Yang L-h, Wang S-l, Tang L-l, Liu B, Wang L-l, Wang Z-y, et al. Universal stem-loop primer method for screening and quantification of microRNA. PLoS One. 2014;9(12):e115293. 30. Marques-Piubelli ML, Salas YI, Pachas C, Becker-Hecker R, Vega F, Miranda RN. Epstein-Barr virus-associated B-cell lymphoproliferative disorders and lymphomas: a review. Pathology. 2020;52(1):40-52. 31. Gordaliza M. Natural products as leads to anticancer drugs. Clinical and Translational Oncology. 2007;9(12):767-76. 32. Samarghandian S, Borji A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy research. 2014;6(2):99. 33. Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, et al. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/D-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Exp Ther Med. 2019;18(5):3775-82. 34. Bakshi HA, Sam S, Feroz A, Ravesh Z, Shah GA, Sharma M. Crocin from Kashmiri saffron (Crocus sativus) induces in vitro and in vivo xenograft growth inhibition of Dalton’s lymphoma (DLA) in mice. Asian Pac J Cancer Prev. 2009;10(5):887-90. 35. Li X, Jiang C, Zhu W. Crocin reduces the inflammation response in rheumatoid arthritis. Biosci Biotechnol Biochem. 2017;81(5):891-8. 36. Bakshi HA, Hakkim FL, Sam S, Javid F. Role of dietary crocin in in vivo melanoma tumor remission. Asian Pacific journal of cancer prevention: APJCP. 2017;18(3):841. 37. Hu W, Kavanagh J. Anticancer therapy targeting the apoptotic pathway. The lancet oncology.2004;421:4-9. 38. Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A, Ruiz G, Núñez-Martínez JM, González-Sánchez I, et al. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. J Ethnopharmacol. 2013;145(2):476-89. 39. Faridi N, Heidarzadeh H, Mohagheghi M-A, Bathaie SZ. BT-474 Breast Cancer Cell Apoptosis Induced by Crocin, a Saffron Carotenoid. Basic & Clinical Cancer Research. 2019. 40. Bathaie SZ, Bolhassani A, Tamanoi F. Chapter Four - Anticancer Effect and Molecular Targets of Saffron Carotenoids. In: Bathaie SZ, Tamanoi F, editors. The Enzymes. 36: Academic Press; 2014. p. 57-86. 41. Lv C-F, Luo C-L, Ji H-Y, Zhao P. [Influence of crocin on gene expression profile of human bladder cancer cell lines T24]. Zhongguo Zhong Yao Za Zhi. 2008;33(13):1612-7. 42. Hakkim L. Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation. Asian Pacific journal of cancer prevention: APJCP. 2016;17:1499-506. 43. Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomedicine & Pharmacotherapy. 2017;94:307-16.