پاسخ miR-133a و برخی شاخص های هایپرتروفی قلبی به یک دوره تمرین استقامتی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، واحد آیت اله آملی، دانشگاه آزاد اسلامی،آمل، ایران

2 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی،واحد آیت اله آملی، دانشگاه آزاد اسلامی،آمل، ایران

3 گروه فیزیولوژی ورزشی،دانشکده تربیت بدنی و علوم ورزشی،واحددامغان،دانشگاه آزاد اسلامی،دامغان، ایران

چکیده

​مقدمه: اثر فعالیت ورزشی بر بیان ژن های اثرگذار بر هایپرتروفی قلبی مشخص نیست. شواهد نشان می دهد که برخی از miRNA ها در بهبود عملکرد قلب نقشی مهمی ایفا می ­کنند. هدف از این پژوهش، پاسخ ژن miR-133a و برخی شاخص های هایپرتروفی قلبی به یک دوره تمرین استقامتی بود.
روش کار: در این مطالعه تجربی، 10 سر موش صحرایی نر چهار تا شش هفته ای نژاد ویستار به طور تصادفی در دو گروه کنترل و تمرین قرار گرفتند. تمرین استقامتی، پنج روز در هفته با سرعت 25 متر بر دقیقه و شیب صفر درجه به مدت دوازده هفته اجرا شد. میزان بیان ژن­ های miR-133a ،  IGF-1 و IGF-R به روش Real Time PCR اندازه­ گیری شد. برای تجزیه و تحلیل داده ­ها از آزمون t مستقل در سطح معناداری آماری 0.05>P  استفاده شد.
یافته­ ها: نتایج نشان داد که پس از دوازده هفته تمرین هوازی بیان ژن miR-133a و IGF-1 در گروه تمرین نسبت به گروه­ کنترل به طور معناداری بالاتر بود (p=0.001). همچنین، بعد از دوازده هفته تمرین هوازی تفاوت معناداری در بیان ژن IGF-R  بین دو گروه مشاهده نشد (p>0.05).
نتیجه‌گیری: با توجه به یافته های پژوهش حاضر، دوازده هفته تمرین هوازی احتمالا می تواند فعالیت های حفاظت قلبی را از طریق شاخص های هایپرتروفی قلبی افزایش دهد.  
 
 

کلیدواژه‌ها

عنوان مقاله [English]

The Response of miR-133a and Some Markers of Cardiac Hypertrophy to Endurance Training

نویسندگان [English]

  • Susan Shahin jahromi 1
  • Asieh Abbassi daloii 2
  • Alireza Barari 2
  • Ayyoub Saeidi 3

1 Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

3 Department of Physical Education and Sport Science, Damghan Branch, Islamic Azad University, Damghan, Iran

چکیده [English]

Introduction: The effect of exercise on the expression of genes affecting cardiac hypertrophy is unclear. Evidence
suggests that some miRNAs play an important role in improving heart function. The aim of this study was to evaluate the response of miR-133a and some markers of cardiac hypertrophy to endurance training.
Materials and Methods: To implementation of this experimental research, 10 male Wistar Rats (4-6 weeks old) randomly were divided into 2 groups control and endurance training. Endurance training performed 5 days a week at a
speed of 25 m/min and a gradient of zero degrees for 12 weeks. The expression of miR-133a, IGF-1 and IGF-R genes were measured by Real Time PCR. Data were analyzed by independent t-test at the P<0.05.
Results: The results showed that after 12 weeks of aerobic exercise the expression of miR-133a and IGF-1 gene
was significantly higher in the exercise group than in the control group (P=0.001). Also, after 12 weeks of aerobic training, no significant difference was observed in IGF-R gene expression between the two groups (P >0.05).
Conclusion:
According to the findings of the present study, twelve weeks of aerobic exercise may possibly increase
cardiac protection activities through cardiac hypertrophy indices

کلیدواژه‌ها [English]

  • Exercise
  • Cardiac Hypertrophy
  • miR-133a
  • IGF-1
  • IGF-R
1. Colpaert Robin MW, Calore M. MicroRNAs in Cardiac Diseases. Cells. 2019; 8(7): 737. 2. Ruan Y, Guo Y, Zheng Y, Huang Z, Sun S, Kowal P, et al. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. BMC Public Health. 2018 18(1):778. 3. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073-1084. 4. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends in Genetics. 2008;24(4):159-66. 5. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13(5):613-8 6. Huang MB, Xu H, Xie SJ, Zhou H, Qu LH. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLOS ONE, 2011; 6(12): e29173. 7. Kim YG, Kim HJ. Exercise-induced increase of BDNF decreased TG and glucose in obese Adolescents. JENB (Journal of Exercise Nutrition & Biochemistry). 2013;17(3):87-93. 8. Kong AP, Choi K-C, Wong GW, Ko GT, Ho C-S, Chan MH, et al. Serum concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3 and cardiovascular risk factors in adolescents. Annals of clinical biochemistry. 2011;48(3):263-9. 9. Ock S, Lee WS, Ahn J, Kim HM, Kang H, Kim H-S, et al. Deletion of IGF-1 receptors in cardiomyocytes attenuates cardiac aging in male mice. Endocrinology. 2016;157(1):336-45. 10. Rezaei R, Fathi M. The Study of the Effect of A Long Term Endurance Activity on Cardiac Structure and Expression of Mir-133 in Rats. J Arak Uni Med Sci. 2019; 22 (3):59-68 11. Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics. 2011;43(11):665-73. 12. Winbanks CE, Ooi JY, Nguyen SS, McMullen JR, Bernardo BC. Micro RNA s differentially regulated in cardiac and skeletal muscle in health and disease: Potential drug targets? Clinical and Experimental Pharmacology and Physiology. 2014;41(9):727-37 13. Al-Asoom L, Al-Shaikh B, Bamosa A, El-Bahai M. Effect of Nigella sativa Supplementation to Exercise Training in a Novel Model of Physiological Cardiac Hypertrophy. Cardiovascular toxicology, 2014; 14(3), 243-250. 14. Souza RW, Piedade WP, Soares LC, Souza PA, Aguiar AF, Vechetti-Júnior IJ, et al. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.2014; 1-12. 15. Bernhard Winzer E, Woitek F, Linke A, Physical Activity in the Prevention and Treatment of Coronary Artery Disease J Am Heart Assoc. 2018; 7(4): e007725. 16. Tian D, Meng J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. 2019;1-11. 17. Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, et al. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci. 2019; 217:128-140. 18. Khabazian BMG, Safarzadeh-Golpordesari AR, Ebrahimi M, Rahbarizadeh F, Abednazari H. Endurance training enhances ABCA1 expression in rat small intestine. European Jornal of Applied Physiology. 2009; 107:351-8. 19. Ghorbani P, Kordi MR, Gaeini A, Noori R, Karbalaeifar S. Effect of High Intensity Interval Training on miR-1, miR133-a Gene Expression in Rats with Myocardial Infarction. 2018; 10(37):87-98 20. Habibi P, Alihemmati A, NourAzar A, Yousefi H, Mortazavi S, Ahmadiasl N. Expression of the Mir-133 and Bcl-2 could be affected by swimming training in the heart of ovariectomized rats. Iranian journal of basic medical sciences. 2016;19(4):381 21. Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. The Journal of physiology. 2010;588(20):4029-37 22. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of applied physiology. 2009;106(3):929-34. 23. Mitchelson KR, Qin W-Y. Roles of the canonical myomiRs miR-1-133 and-206 in cell development and disease. World journal of biological chemistry. 2015;6(3):162 24. Xiao-Ming Y. Signal transduction mediated by Bid, a pro-death Bcl-2 family protein, connects the death receptor and mitochondria apoptosis pathways. Cell research. 2000;10(3):161 25. Subramanian S, Steer CJ. MicroRNAs as gatekeepers of apoptosis. Journal of cellular physiology. 2010;223(2):289-98. 26. Lai CH, Ho TJ, Kuo WW, Day CH, Pai Py, Chung LC, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age. 2014;36(5):9706. 27. Yeves AM, Burgos JI, Medina AJ, Villa‐Abrille MC, Ennis IL. Cardioprotective role of igf‐1 in the hypertrophied myocardium of the spontaneously hypertensive rats: a key effect on nhe‐1 activity. Acta Physiologica. 2018: e13092 28. Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B, et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. Journal of molecular and cellular cardiology. 2013; 65:127-36 29. Song CL, Liu B, Diao HY, Shi YF, Zhang JC, Li YX, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget. 2016;7(26):39740 30. Zhang W, Liu K, Liu S, Ji B, Wang Y, Liu Y. MicroRNA-133a functions as a tumor suppressor by targeting IGF-1R in hepatocellular carcinoma. Tumor Biology. 2015;36(12):9779-88