اثر حفاظتی تمرین هوازی بر اختلالات شناختی و عملکرد حرکتی موشهای صحرایی نر به دنبال ایسکمی مغزی

نویسندگان

1 دانشگاه آزاد اسلامی واحد ایلام

2 دانشگاه ایلام

چکیده

مقدمه: اگر خون­رسانی به قسمتی از مغز دچار اختلال شده و متوقف شود، این قسمت از مغز دیگر نمی‌تواند عملکرد طبیعی خود را داشته باشد. این وضعیت را اصطلاحاً سکته مغزی می‌نامند. هدف از اجرای این پژوهش، بررسی اثر حفاظتی چهار هفته تمرین هوازی بر اختلالات شناختی و عملکرد حرکتی موش­های صحرایی نر به دنبال ایسکمی مغزی بود.
روش کار: در این پژوهش تعداد 27 سر موش صحرایی نر بالغ نژاد ویستار (وزن 260-230 گرم) خریداری و به‌طور تصادفی به سه گروه: شم، ایسکمی و تمرین + ایسکمی تقسیم شدند. رت­های گروه تمرین 5 روز در هفته و به مدت 4 هفته روی نوار گردان دویدند. ایسکمی توسط انسداد هر دو شریان کاروتید مشترک به مدت 20 دقیقه ایجاد شد. از آزمون حافظه احترازی غیرفعال برای بررسی میزان اختلال در حافظه و از آزمون سطح شیب­دار جهت ارزیابی عملکرد حرکتی استفاده شد. از روش­های آماری کولموگروف- اسمیرنف، تحلیل واریانس یک­طرفه و تعقیبی شفه در سطح معناداری 05/0>p < /span> برای تحلیل داده­ها استفاده شد.
یافته­ها: نتایج نشان داد تمرین ورزشی به‌طور معناداری میزان اختلال ناشی از ایسکمی در حافظه کوتاه‌مدت در آزمون حافظه احترازی غیرفعال (001/0 =p < /span>) را کاهش می‌دهد، اما عملکرد حرکتی موش‌های صحرایی مبتلابه ایسکمی در آزمون سطح شیب­دار به دنبال تمرین هوازی تغییر معناداری نداشت (137/0=p < /span>).
نتیجه ­گیری: به‌طورکلی، چهار هفته تمرین هوازی منجر به بهبود اختلالات شناختی در موش­های صحرایی نر به دنبال ایسکمی مغزی می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

The protective effect of aerobic training on cognitive impairment and motor dysfunction in male rats following cerebral ischemia

نویسندگان [English]

  • Hadi Erfani 1
  • Abdolhossein Taheri Kalani 1
  • Nabi Shamsaei 2

1

2

چکیده [English]

Introduction: If the blood supply to a part of the brain gets disturbed and stopped, this part of the brain can not function normally. This condition is called stroke. The aim of this study was to examine the protective effect of 4-week aerobic training on cognitive impairment and motor dysfunction in male rats following cerebral ischemia. Materials and Methods: For this purpose, 27 adult male Wistar rats (weighing 230-260 g) were purchased and randomly divided into three groups: sham, iscehemia and exercise training +iscehemia groups. The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCA) for 20 min. The passive avoidance memory test was used to assess the memory impairments. Behavioral test including inclend plane was used to assess motor function. For data analysis, Kolmogroph-Smirnoff, one-way ANOVA and Scheffe  post-hoc tests were used (p<0.05).
Results: Results showed that the exercise training significantly reduced the ischemia-induced disorder in the short-term memory in passive avoidance memory test (p= 0.0001). However, motor function of ischemic rats did not change significantly in the inclend plane test after exercise (p= 0.137).
Conclusion: In general, 4 weeks of aerobic training improved cognitive impairment in ischemic rats.

کلیدواژه‌ها [English]

  • Cognitive impairment
  • Motor dysfunction
  • Aerobic training
  • Ischemia
1. Siesj BK. Pathophysiology and treatment of focal cerebral ischemia. J Neurosurg 1992; 77(2):169-84. 2. Benchoua A, Guégan C, Couriaud C, et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 2001; 21(18):7127-34. 3. Murakami K, Kondo T, Chan PH. Reperfusion following focal cerebral ischemia alters distribution of neuronal cells with DNA fragmentation in mice. Brain Res 1997; 751(1):160-4. 4. Siesjö BK. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1981; 1(2):155-85. 5. Britton M, Rafols J, Alousi S, et al. The effects of middle cerebral artery occlusion on central nervous system apoptotic events in normal and diabetic rats. Int J Exp Disabil Res 2003; 4(1):13-20. 6. Tatsuki I, Motohiro I, Shozo N, et al. Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J Neural Transm 2011; 118(9):1263-72. 7. Ang ET, Gomez-Pinilla F. Potential therapeutic effects of exercise to the brain. Curr Med Chem 2007; 14:2564-2571. 8. Somani SM, Ravi R, Rybak LP. Effect of exercise training on antioxidant system in brain region of rat. Pharmacol Biochem Behav 1995; 50:635-639. 9. Soriano FX, Papadia S. Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 2006; 26(17):4509-4518. 10. Liebelt B, Papapetrou P, Ali A. Exercise preconditioning reduces neuronal apoptosis in stroke by upregulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 2010; 166(4):1091-1100. 11. Ploughman M, Granter-Button S, Chernenko G. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia 2007; 1150:207-216. 12. Goto S, Radak Z. Regular exercise attenuates oxidative stress in aging rat tissues: a possible mechanism toward anti-aging medicine. JESF 2007; 5(1):1-6. 13. Zhang F, Jia J, Wu Y, et al. The effect of treadmill training pre-exercise on glutamate receptor expression in rats after cerebral ischemia. Int Mol Sci 2010; 11(7):2658-2669. 14. Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience 2011; 177: 170-176. 15. Sharifi ZN, Abolhassani F, Hassanzadeh G, et al. Neuroprotective treatment with FK506 reduces hippocampal damage and prevents learning and memory deficits after transient global ischemia in rat. Arch Neurosci 2013; 1(1):35-40. 16. Sharifi ZN, Abolhassani F, Zarrindast MR, et al. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat. Stroke Res Treat 2012; 2012: 809417; 1-8. 17. Harooni HE, Naghdi N, Sepehri H, et al. The role of hippocampal nitric oxide (NO) on learning and immediate, short-and long-term memory retrieval in inhibitory avoidance task in male adult rats. Behav Brain Res 2009; 201(1):166-172. 18. Popa-Wagner A, Stocker K, Balseanu AT, et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke 2010; 41(5):1027-31. 19. Van Meeteren NL, Brakkee JH, Helders PJ, et al. The effect of exercise training on functional recovery after sciatic nerve crush in the rat. J Peripher Nerv Syst 1998; 3(4):277-82. 20. Cotman CW, Berchtold NC. Physical activity and the maintenance of cognition: learning from animal models. Alzheimers Dement 2007; 3(2): 30-37. 21. Burghardt PR, Fulk LJ, Hand GA, et al. The effects of chronic treadmill and wheel running on behavior in rats. Brain Res 2004; 1019:84-96. 22. Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15(4):961-973. 23. Hossmann KA. Glutamate Mediated Injury in Focal Cerebral Ischemia: The Excitotoxin Hypothesis Revised. Brain Pathol 1994; 4(1):23-36. 24. Sugawara T, Fujimura M, Noshita N, et al. Neuronal death/survival signaling pathways in cerebral ischemia. Neuro Rx 2004; 1(1):17-25. 25. Zwagerman N, Plumlee C, Guthikonda M, et al. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res 2010; 32(2):123-6. 26. Zwagerman N, Sprague S, Davis MD, et al. Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res 2010; 32(5):523-9. 27. Ness JK, Scaduto RC, Wood TL. IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors. Glia 2004; 46(2):183–194. 28. Jia J, Feng Z, Yong-Shan H. Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res 2010; 204(2):173-179. 29. Jia J, Hu Y-S, Wu Y, et al. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life Sci 2009; 84(15):505-11. 30. Khaksari M, Aboutaleb N, Nasirinezhad F, et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosi 2012; 48(1):201-8. 31. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21(1):2-14. 32. Radak Z, Kumogai S, Taylor AW. Effects of exercise on brain function: role of free radicals. Appl Physiol Nutr Metab 2007; 32(5):942-946. 33. Giffard RG, Yenari MA. Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 2004; 16(1):53-61. 34. Matsumori Y, Hong SM, Aoyama K, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005; 25(7):899-910. 35. Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 1998; 80(2):183-201. 36. Ohtsuka K, Suzuki T. Roles of molecular chaperones in the nervous system. Brain Res Bull 2000; 53(2):141-146. 37. Starnes JW, Choilawala AM, Taylor RP, et al. Myocardial heat shock protein 70 expression in young and old rats after identical exercise programs. J Gerontol A Biol Sci Med Sci 2005; 60(8):963–969. 38. Botchkina GI, Meistrell M, Botchkina IL, et al. Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 1997; 3(11):765. 39. Baillat G, Garrouste F, Remacle-Bonnet M, et al. Bcl-xL/Bax ratio is altered by IFNg in TNFα but not in TRAIL-induced apoptosis in colon cancer cell line. Biochim Biophys Acta 2005; 1745(1): 101– 110. 40. Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2(7):788-94. 41. Wang RY, Yang YR, Yu SM. Protective effects of treadmill training on infarction in rats. Brain Res 2001; 922(1):140-3. 42. Reyes JR, Wu Y, Lai Q, et al. Early inflammatory response in rat brain after peripheral thermal injury. Neurosci letters 2006; 407(1):11-5. 43. Cohen-Cory S, Kidane AH, Shirkey NJ, et al. Brain-derived neurotrophic factor and the development of structural neuronal connectivity: Dev Neurobiol 2010; 70(5):271-288. 44. Kim H, Li Q, Hempstead BL, et al. Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brainderived endothelial cells. J Biol Chem 2004; 279(32):33538-33546. 45. Kuipers SD, Bramham CR. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel 2006; 9(5):580-586. 46. Ding Y, Li J, Luan X, et al. Exercise Pre-conditioning Reduces Brain Damage in Ischemic Rats That May be Associated with Regional Angiogenesis and Cellular Overexpression of Neurotrophin. Neuroscience 2004; 124(3):583-591. 47. Ang ET, Wong PT, Moochhala S, et al. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 2003; 118(2):335-345. 48. Tang KC, Xia FC, Wagner PD, Breen E. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 2010; 170(1):16-22.