اثر کاتچین بر سطح سرمی سایتوکین‌های التهابی، فعالیت آنزیم های آنتی اکسیدانی و آسیب اکسیداتیو DNA بافت تخمدان در موش های صحرایی مدل سندرم تخمدان پلی کیستیک

نویسندگان

1 دانشگاه پیام نور

2 دانشگاه آزاد اسلامی مشهد

چکیده

مقدمه: اختلالات هورمونی به­همراه استرس­اکسیداتیو و التهاب در بافت تخمدان موجب عدم تخمک­گذاری در مبتلایان به سندرم تخمدان پلی­کیستیک (PCOS) می­شود. کاتچین از مهم­ترین فلاونوئیدهای چای سبز (Camellia sinensis) می­باشد. با توجه به خواص آنتی­اکسیدانی کاتچین، هدف از این مطالعه تعیین اثر کاتچین بر سطح سرمی سایتوکین­های التهابی، فعالیت آنزیم­های آنتی­اکسیدانی و آسیب اکسیداتیو DNA بافت تخمدان در موش­های صحرایی مدل سندرم تخمدان پلی­کیستیک می­باشد.

روش­ کار: در این مطالعه تجربی، تعداد 24 سر موش صحرایی ماده نژاد ویستار به 4 گروه مساوی (6=n) شاهد (محلول سالین، 24 روز، تزریق داخل صفاقی)، PCOS تیمار نشده (محلول سالین، 24 روز، تزریق داخل صفاقی) و  PCOSتحت تیمار با کاتچین (50 و 100 میلی­گرم بر کیلوگرم، 24 روز، تزریق داخل صفاقی) تقسیم شدند. سندرم تخمدان پلی­کیستیک در گروه­های مبتلا به PCOS، با یک­بار تزریق عضلانی استرادیول والرات (40 میلی­گرم بر کیلوگرم) القاء شد. در پایان دوره درمان، سطح سرمی TNF-α، IL-1β و IL-6، همچنین سطح آنزیم­های SOD،CAT ، GPX و میزان MDA و HOdG-8 در بافت تخمدان توسط روش الایزا سنجش شد.

یافته­ها: در مقایسه با گروه PCOS تیمار نشده، سطح سرمی TNF-α، IL-1β و IL-6 در گروه­های تیمار شده با غلظت­های 50 و 100 میلی­گرم بر کیلوگرم کاتچین، وابسته به دوز تزریقی به­طور معنی­داری کاهش، سطح آنزیم­های SOD،CAT ، GPX بافت تخمدان به­طور معنی­داری افزایش و میزان MDA و HOdG-8 به­طور معنی داری کاهش یافت (05/0>p < /span>).

نتیجه­گیری: کاتچین موجب کاهش سطح سرمی سایتوکاین­ها، افزایش فعالیت آنزیم­های آنتی­اکسیدانی و کاهش پراکسیداسیون لیپیدی و آسیب اکسیداتیو DNA بافت تخمدان در موش­های صحرایی مدل سندرم تخمدان پلی­کیستیک می­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Catechin on Serum Levels of Inflammatory Cytokines, Antioxidant Enzymes Activity and DNA Oxidative Damage of Ovarian Tissue in Polycystic Ovarian Syndrome Rat Model

نویسندگان [English]

  • Rahbareyan Raheleh 1
  • sadoghi damoon 2

1

2

چکیده [English]

Introduction:

Hormonal disorders associated with oxidative stress and inflammation in ovarian tissue causing anovulation in patients with polycystic ovary syndrome (PCOS). Catechin is the most important flavonoids from green (Camellia sinensis). According to the antioxidant properties of catechin, the aim of this study was to determine the effects of catechin on serum levels of inflammatory cytokines, antioxidant enzymes activity and DNA oxidative damage of ovarian tissue in polycystic ovarian syndrome rat model.

Materials & methods:

In this experimental study, 24 Wistar male rats were divided into 4 equal groups (n=6) of control (saline solution, 24 days, ip), non-treated PCOS (saline solution, 24 days, ip) and PCOS treated with Catechin (50 and 100 mg/kg, 24 days, ip). Polycystic ovarian syndrome was induced by single intramuscular injection of estradiol valerate (40 mg/kg) in PCOS groups. At the end of treatment period, serum level of TNF-α, IL-1β and IL-6, also level of SOD, CAT, GPX enzymes and level of MDA and HOdG-8 in ovarian tissue were measured by ELISA.

Results:

Compared to non-treated PCOS group, serum level of TNF-α, IL-1β and IL-6 in groups of treated with 50 and 100 mg/kg of catechin, dose-dependent significantly decreased, level of SOD, CAT, GPX enzymes in ovarian tissue significantly increased and level of MDA and HOdG-8 was significantly decreased (p<0.05).

Conclusion:

Catechin is decreases serum level of cytokines, increase activity of antioxidant enzymes and decreases lipid peroxidation and DNA oxidative damage of ovarian tissue in polycystic ovarian syndrome rat model.

کلیدواژه‌ها [English]

  • Polycystic ovarian syndrome
  • Catechin
  • Cytokine
  • Oxidative stress
  • Rat
1. Alchami A, O'Donovan O, Davies M. PCOS: diagnosis and management of related infertility. Obstet Gynaecol Reprod Med 2015; 25:279-82. 2. Santbrink EJP, Fauser BCJM. Ovulation induction in normogonadotropic anovulation (PCOS). Best Pract Res Clin Endocrinol Metab 2006; 20:261-70. 3. Ciaraldi TP, Aroda V, Mudaliar SR, Henry RR. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: Effects of pioglitazone and metformin treatment. Metabolism 2013; 62:1587-96. 4. Wang Y, Zhu W. Evaluation of Adiponectin, Resistin, IL-6, TNF-α in Obese and Non-Obese Women with Polycystic Ovary Syndrome. Reprod Contracept 2012; 23:237-44. 5. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family - Balance between agonists and antagonists in inflammatory diseases. Cytokine 2015; 76:25-37. 6. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145:213-25. 7. Dikmen A, Ergenoglu AM, Yeniel AO, Dilsiz OY, Ercan G, Yilmaz H. Evaluation of glycemic and oxidative/antioxidative status in the estradiol valerate-induced PCOS model of rats. Eur J Obstet Gynecol Reprod Biol 2012; 160:55-9. 8. Sabuncu T, Vural H, Harma M, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin Chem 2001; 34:407-13. 9. Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu CH, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013; 65:978-87. 10. Setyaningsih Y, Husodo AH, Astuti I. Detection of Urinary 8-hydroxydeoxyguanosine (8-OHdG) Levels as a Biomarker of Oxidative DNA Damage among Home Industry Workers Exposed to Chromium. Procedia Environ Sci 2015; 23:290-6. 11. Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2000; 327:1-6. 12. Goswami PK, Khale A, Ogale S. Natural remedies for polycystic ovarian syndrome (PCOS). A review. Int J Pharm Phytopharm Res. 2012; 1:396-402. 13. Choi SJ, Park SY, Park JS, Park SK, Jung MY. Contents and compositions of policosanols in green tea (Camellia sinensis) leaves. Food Chem 2016; 204:94-101. 14. Asadi S, Zamiri A, Ezzati S, Parsaei P, Rafieian M, Shirzad H. Effect of alcoholic extract of green tea (Camellia sinensis) on the healing process in surgical and burn wounds in rats. J Birjand Univ Med Sci 2011; 18:1-9. (Persian) 15. Najafi Kakavand M, Oryan S, Nabiuni M, Ghafournian H. The effect of green tea extract memory impairment induced by injection of streptozotocin-induced brain in male Wistar rat. Pejouhandeh 2015; 20:198-205. (Persian) 16. Shariatzadeh M A, Mohammadi M. Protective role of green tea (Camellia sinensis) hydroalcholic extract on sperm parameters and testicular tissue in NMRI mice exposed to sodium arsenite. J Birjand Univ Med Sci 2015; 21:432-43. (Persian) 17. Sadat Khorsandi L, Javadnia F, Orazizadeh M, Abdolahi M. Effect of green tea (Camellia sinensis L.) extract on acetaminophen induced acute hepatotoxicity in mice. Iran J Med Aromatic Plants 2010; 26:22-9. (Persian) 18. Spadiene A, Savickiene N, Ivanauskas L, Jakstas V, Skesters A, Silova A, et al. Antioxidant effects of Camellia sinensis L. extract in patients with type 2 diabetes. J Food Drug Anal 2014; 22:505-11. 19. Bekyürek T, Liman N, Bayram G. Diagnosis of sexual cycle by means of vaginal smear method in the chinchilla (Chinchilla lanigera). Lab Anim 2002; 36:51-60. 20. Tahmasebi F, Movahedin M, Mazaheri Z. Poly Cystic Ovary Model as an Elevated Oxidative Stress Factor. J Mazandaran Univ Med Sci 2015; 25:82-91. (Persian) 21. Sepehri-Moghadam H, Rahbarian R, Sadoughi SD. The effect of aqueous extract of Launaea acanthodes (Boiss.) O. Kuntze on the serum level of insulin and blood glucose and histomorphological changes of pancreas in diabetic rats. Feyz 2015; 19:30-7. (Persian) 22. Walters KA, Allan CM, Handelsman DJ, Rodent Models for Human Polycystic Ovary Syndrome. Biol Reprod 2012; 86:1-12. 23. Zafari Zangeneh F, Abdollahi A, Naghizadeh MM, Bagheri M. A low-grade chronic inflammation in polycystic ovary syndrome: Role of interleukin-1 alpha, 1 beta, 17A and TNFα. Ijogi 2015; 17:9-15. (Persian) 24. Pawelczak M, Rosenthal J, Milla S, Ying- Liu H, Shah B. Evaluation of the Pro-Inflammatory Cytokine Tumor Necrosis Factor-α in Adolescents with Polycystic Ovary Syndrome. J Pediatr Adolesc Gynecol 2014; 27:356-9. 25. Yaghmaei M, Mokhtari M, Roudbari M, Harati M, Rashidi H, Dabiri S, et al. Comparison of the CRP and ESR Levels between Women with Polycystic Ovarian Syndrome and Control Group. J Guilan Univ Med Sci 2008; 17:108-16. (Persian) 26. Malhotra N, Gongadashetti K, Dada R, Singh N. Oxidative stress biomarkers in follicular fluid of women with PCOS and tubal factor infertility-is there a correaltion with in-vitro-fertilization outcome? Fertil Steril 2014; 102:86. 27. Duleba AJ. Medical management of metabolic dysfunction in PCOS. Steroids 2012; 77:306-11. 28. Norouzi T, Ghatreh Samani K, Amini SA, Jafarzadeh L, Mardani G. Compare the effects of atorvastatin and omega-3 on index of lipid oxidation in patients with polycystic ovary syndrome. J Shahrekord Univ Med Sci 2016; 18:36-44. (Persian) 29. Petríkova J, Lazurova I. Ovarian failure and polycystic ovary syndrome. Autoimmun Rev 2012; 11:471-8. 30. Singh R, Akhtar N, Haqqi TM. Green tea polyphenol epigallocatechin 3- gallate: Inflammation and arthritis. Life Sci 2010; 86:907-18. 31. SenthlKumaran VA, Arulmalh K, Kalaiselvi P. Attenuation of the inflammatory changes and lipid anomalies by epigallcatechingallate in hypercholesterolemic diet feed agedrats. Exp Gerontol 2009; 112:2735-52. 32. Banitalebi E, Razavi T, Norian M, Bagheri L. The effect of combined aerobic exercise training and green tea extract on serum TNF-α and IL-6 levels in obese women with type 2 diabetes. Daneshvarmed 2016; 23:11-20. (Persian) 33. Senanayake SPJN. Green tea extract: Chemistry, antioxidant properties and food applications - A review. J Funct Foods 2013; 5:1529-41. 34. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr 2004; 134: 3431-40. 35. Chobot V, Huber CH, Trettenhahn G, Hadacek F. Catechin: Chemical Weapon, Antioxidant, or Stress Regulator? J Chem Ecol 2009; 35:980-96. 36. Sharifi A, Razmi N, Naghsh N. The Antioxidant Effect of Camellia Sinesison on the Liver Damage Induced by Tioacetamide in Male Mice. Mljgoums 2014; 7:13-18. (Persian) 37. Karami Robati A, Ayatollahi Mousavi SA, Hadizadeh S. Study of Nosocomial Fungal infections acquired from Kerman education hospitals. J Rafsanjan Univ Med Sci 2014; 13:125-40. (Persian) 38. Azam S, Hadi N, Khan NU, Hadi SM. Prooxidantproperty of green tea polyphenols, epicatechin and epicatechin-3-gallate: implications of anticancer properties. Toxicol in Vitro. 2004; 18:555-61. 39. Hasegawa R, Chujo T, Sai-Kato K, Umemura T, Tanimura A, Kurokawa Y. Preventive effects of green tea against liver oxidative DNA damage and hepatotoxicity in rats treated with 2-nitropropane. Food Chem Toxicol 1995; 33: 961-70. 40. Katiyara S, Elmetsa CA, Katiyar SK. Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J Nutr Biochem 2007; 18:287-96. 41. Leandersona P, Faresjöa AO, Christer Tagesson CH. Green Tea Polyphenols Inhibit Oxidant-Induced DNA Strand Breakage in Cultured Lung Cells. Free Radic Biol Med 1997; 23:235-42.