بررسی ژن های منتخب مرتبط با سیگنالینگ سیتوکین در بافت مغز بیماران مبتلا به اختلال افسردگی ماژور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده تجهیزات و فناوری های انتظامی، پژوهشگاه علوم انتظامی و مطالعات اجتماعی فراجا، تهران، ایران

2 مرکز تحقیقات علوم و فناوری‌های زیستی و سلامت پلیس، معاونت بهداشت، امداد و درمان، فرماندهی انتظامی، تهران، ایران

چکیده

مقدمه: اختلال افسردگی ماژور یکی از متداول ترین بیماری های حوزه روانی  است. نتایج پژوهش ها نشان می‌دهند که در این دسته از بیماران، فرآیندهای التهابی افزایش می‌یابند. با این وجود، شمار اندکی از پژوهش ها به موضوع مارکرهای التهابی در مغز این بیماران  پرداخته‌اند. هدف مطالعه حاضر بررسی بیان محور تنظیمی مرتبط با سیگنالینگ سیتوکین در بافت مغز بیماران مبتلا به اختلال افسردگی ماژور بود.
روش کار: با بهره‌گیری از یک رویکرد بیوانفورماتیکی بر پایه تجزیه و تحلیل داده‌های ریزآرایه، بیان یک محور تنظیمی در نمونه‌های بافت قشر پیش‌پیشانی بررسی شد. اصلاح پس‌زمینه، فیلتر کردن ژن و نرمال سازی داده ها با استفاده از آزمون های مختلف در نرم افزار R انجام شد. کیفیت داده ها نیز با بهره‌گیری از بسته AgiMicroRna و نمودار PCA بررسی شد. ژن‌های دارای تغییر بیان با استفاده از بسته limma  شناسایی شدند. برای بررسی همبستگی بین ژن‌های منتخب از آزمون پیرسون در نرم افزار R  استفاده شد.
یافته ها: نتایج بدست آمده نشان دادند که بیان ژن‌های BDNF و NRG1 در بافت PFC بیماران MDD با کاهش معناداری همراه بوده و از سوی دیگر بیان در سطح ژن‌های IL6 و TNF با افزایش معناداری روبرو شده است. همچنین یک همبستگی منفی قدرتمند میان ژن‌های IL6 و BDNF حاصل گردید.
نتیجه گیری: در این مطالعه، نتایج نشان می‌دهند که میان پیشرفت بیماری MDD و سیگنالینگ بواسطه سیتوکین رابطه پیچیده‌ای وجود دارد. این پژوهش شواهدی در راستای درک بهتر سازوکارهای بیماری‌زایی MDD ارائه می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating specific genes associated with cytokine signaling in the brains of major depressive disorder patients

نویسندگان [English]

  • Shirin Jalili 1
  • Mohammad Panji 2

1 Institute of Police Equipment and Technologies, Policing Sciences and Social Studies Research Institute, Tehran, Iran

2 Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran

چکیده [English]

Introduction: Major depressive disorder (MDD) is one of the most common mental illnesses. The results obtained
from previous studies conducted in this field show that inflammatory processes increase in MDD patients. However, few studies have addressed the issue of inflammatory markers in the brains of MDD patients. The aim of this study was to investigate the expression of regulatory axis related to cytokine signaling including IL6, TNF, NRG1 and BDNF in prefrontal cortex tissue samples.
Materials and Methods: In the present study, using a bioinformatics approach based on microarray data analysis, the expression of a regulatory axis related to cytokine signaling, including four genes (IL6, TNF, NRG1, and BDNF),
in prefrontal cortex tissue (PFC) samples was investigated. Background correction, gene filtering and data normalization were done using different packages in R. Data quality was also evaluated using AgiMicroRna package and PCA plot.The limma package in R was used in order to identify the genes with expression changes. In addition, Pearson's correlation analysis was performed in R to check the correlation between the selected genes.
Results: The obtained results showed that the expression of BDNF and NRG1 genes in the PFC tissue of MDD patients was associated with a significant decrease (P= 0.037), and on the other hand, the expression of IL6 and TNF genes was significantly increased (P< 0.001). Also, a strong negative correlation between the IL6 and BDNF (P < 0.001) genes was obtained.
Conclusion: In this study, the results show that there is a complex relationship between MDD disease progression
and cytokine signaling. This research provides evidence for a better understanding of the mechanisms of MDD pathogenesis.

کلیدواژه‌ها [English]

  • Major Disorder
  • Bioinformatics
  • Microarray
  • Cytokine
  • Prefrontal Cortex
  1. Blum MTLP, Loredo L. Family dysfunction and
    suicidality in adolescents with major depressive
    disorder. Salud Ment 2015; 38 (3): 195-200.
    2. Ruiz NAL, Del Ángel DS, Brizuela NO, Peraza AV,
    Olguín HJ, Soto MP, et al. Inflammatory Process and
    Immune System in Major Depressive Disorder. Int J
    Neuropsychopharmacol 2022; 25 (1): 46-53.
    3. Sullivan PF, Neale MC, Kendler KS. Genetic
    epidemiology of major depression: review and meta-
    analysis. Am J Psychiatry 2000; 157 (10): 1552-62.
    4. Howard DM, Adams MJ, Clarke TK, Hafferty JD,
    Gibson J, Shirali M, et al. Genome-wide meta-
    analysis of depression identifies 102 independent
    variants and highlights the importance of the
    prefrontal brain regions. Nat Neurosci 2019; 22 (3):
    343-52.
    5. Tubbs JD, Ding J, Baum L, Sham PC. Immune
    dysregulation in depression: Evidence from genome-
    wide association. BBI - Health 2020; 7: 100108.
    6. Richardson B, MacPherson A, Bambico F.
    Neuroinflammation and neuroprogression in
    depression: Effects of alternative drug treatments.
    Brain Behav Immun Health 2022; 26: 100554.
    7. Pariante CM. Why are depressed patients inflamed?
    A reflection on 20 years of research on depression,
    glucocorticoid resistance and inflammation. Eur
    Neuropsychopharmacol 2017; 27 (6): 554-9.
    8. Yirmiya R, Goshen I. Immune modulation of
    learning, memory, neural plasticity and neurogenesis.
    Brain Behav Immun 2011; 25 (2): 181-213.
    9. Haroon E, Raison CL, Miller AH.
    Psychoneuroimmunology meets
    neuropsychopharmacology: translational
    implications of the impact of inflammation on
    behavior. Neuropsychopharmacology 2012; 37 (1):
    137-62.
    10.Felger JC, Lotrich FE. Inflammatory cytokines in
    depression: neurobiological mechanisms and
    therapeutic implications. Neuroscience 2013; 246:
    199-229.
    11.Han QQ, Yu J. Inflammation: a mechanism of
    depression? Neurosci Bull 2014; 30 (3): 515-23.
    12.Young JJ, Bruno D, Pomara N. A review of the
    relationship between proinflammatory cytokines and
    major depressive disorder. J Affect Disord 2014; 169:
    15-20.
  2. 13.Banerjee S, Mishra S, Xu W, Thompson WE,
    Chowdhury I. Neuregulin-1 signaling regulates
    cytokines and chemokines expression and secretion
    in granulosa cell. J Ovarian Res 2022; 15 (1): 86.
    14.Haroon E, Raison CL, Miller AH.
    Psychoneuroimmunology meets
    neuropsychopharmacology: translational
    implications of the impact of inflammation on
    behavior. Neuropsychopharmacology 2012; 37 (1):
    137-62.
    15.Hacimusalar Y, Eşel E. Suggested Biomarkers for
    Major Depressive Disorder. Noro Psikiyatr Ars 2018;
    55 (3): 280-90.
    16.Ogawa S, Fujii T, Koga N, Hori H, Teraishi T, Hattori
    K, et al. Plasma L-tryptophan concentration in major
    depressive disorder: new data and meta-analysis. J
    Clin Psychiatry 2014; 75 (9): 14646.
    17.Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH,
    Cheng CK, et al. Neuroprotection by Imipramine
    against lipopolysaccharide-induced apoptosis in
    hippocampus-derived neural stem cells mediated by
    activation of BDNF and the MAPK pathway. Eur
    Neuropsychopharmacol 2008; 18 (2): 128-40.
    18.Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman
    RS. Nuclear factor-κB is a critical mediator of stress-
    impaired neurogenesis and depressive behavior Proc
    Natl Acad Sci. 2010; 107 (6): 2669-74.
    19.Kaneko N, Kudo K, Mabuchi T, Takemoto K,
    Fujimaki K, Wati H, et al. Suppression of cell
    proliferation by interferon-alpha through interleukin-
    1 production in adult rat dentate gyrus.
    Neuropsychopharmacology 2006; 31 (12): 2619-26.
    20.Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde
    S, Kokaia Z, et al. Tumor necrosis factor receptor 1
    is a negative regulator of progenitor proliferation in
    adult hippocampal neurogenesis. J Neurosci 2006; 26
    (38): 9703-12.
    21.Monje ML, Toda H, Palmer TD. Inflammatory
    blockade restores adult hippocampal neurogenesis.
    Science 2003; 302 (5651): 1760-5.
    22.Pariante CM. Risk factors for development of
    depression and psychosis: glucocorticoid receptors
    and pituitary implications for treatment with
    antidepressant and glucocorticoids. Ann N Y Acad
    Sci 2009; 1179 (1): 144-52.
    23.Besedovsky HO, del Rey A. Immune-neuro-
    endocrine interactions: facts and hypotheses. Endocr
    Rev 1996; 17 (1): 64-102.
    24.Pace TW, Hu F, Miller AH. Cytokine-effects on
    glucocorticoid receptor function: relevance to
    glucocorticoid resistance and the pathophysiology
    and treatment of major depression. Brain Behav
    Immun 2007; 21 (1): 9-19.
    25.Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham
    L, Reim EK, et al. A meta-analysis of cytokines in
    major depression. Biol Psychiatry 2010; 67 (5): 446-
    57.
    26.Kahl KG, Bens S, Ziegler K, Rudolf S, Dibbelt L,
    Kordon A, et al. Cortisol, the cortisol-
    dehydroepiandrosterone ratio, and pro-inflammatory
    cytokines in patients with current major depressive
    disorder comorbid with borderline personality
    disorder. Biol Psychiatry 2006; 59 (7): 667-71.
    27.Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer
    A, Aitchison KJ, et al. Candidate genes expression
    profile associated with antidepressants response in
    the GENDEP study: differentiating between baseline
    ‘predictors’ and longitudinal ‘targets’.
    Neuropsychopharmacology 2013; 38 (3): 377-85.
    28.Kakeda S, Watanabe K, Katsuki A, Sugimoto K,
    Igata N, Ueda I, et al. Relationship between
    interleukin (IL)-6 and brain morphology in drug-
    naïve, first-episode major depressive disorder using
    surface-based morphometry. Sci Rep 2018; 8 (1):
    10054.
    29.Polyakova M, Stuke K, Schuemberg K, Mueller K,
    Schoenknecht P, Schroeter ML. BDNF as a
    biomarker for successful treatment of mood
    disorders: a systematic & quantitative meta-analysis.
    J Affect Disord 2015; 174: 432-40.
    30.Aydemir O, Deveci A, Taneli F. The effect of chronic
    antidepressant treatment on serum brain-derived
    neurotrophic factor levels in depressed patients: a
    preliminary study. Prog Neuropsychopharmacol Biol
    Psychiatry 2005; 29 (2): 261-5.
    31.Gervasoni N, Aubry JM, Bondolfi G, Osiek C,
    Schwald M, Bertschy G, et al. Partial normalization
    of serum brain-derived neurotrophic factor in
    remitted patients after a major depressive episode.
    Neuropsychobiology 2005; 51 (4): 234-8.
    32.Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison
    PJ, et al. Molecular Cloning of a Brain-specific,
    Developmentally Regulated Neuregulin 1 (NRG1)
    Isoform and Identification of a Functional Promoter
    Variant Associated with Schizophrenia. J Biol Chem
    2007; 282 (33): 24343-51.
    33.Zhang Z, Huang J, Shen Y, Li R. BACE1-dependent
    neuregulin-1 signaling: an implication for
    schizophrenia. Front Mol Neurosci 2017; 10: 302.
    34.Samsom JN, Wong AH. Schizophrenia and
    depression co-morbidity: what we have learned from
    animal models. Front Psychiatry 2015; 6: 13.
    35.Clarke DJ, Stuart J, McGregor IS, Arnold JC.
    Endocannabinoid dysregulation in cognitive and
    stress-related brain regions in the Nrg1 mouse model
    of schizophrenia. Prog Neuropsychopharmacol Biol
    Psychiatry 2017; 72: 9-15.
    36.Guo WP, Wang J, Li RX, Peng YW. Neuroprotective
    effects of neuregulin-1 in rat models of focal cerebral
    ischemia. Brain Res 2006; 1087 (1): 180-5.
    37.Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen
    PS, et al. Functional recovery of stroke rats induced
    by granulocyte colony-stimulating factor-stimulated
    stem cells. Circulation 2004; 110 (13): 1847-54.
    38.Simmons LJ, Surles-Zeigler MC, Li Y, Ford GD,
    Newman GD, Ford BD. Regulation of inflammatory
    responses by neuregulin-1 in brain ischemia and
    microglial cells in vitro involves the NF-kappa B
    pathway. J Neuroinflammation 2016; 13 (1): 237.
    39.Xu Z, Ford GD, Croslan DR, Jiang J, Gates A, Allen
    R, et al. Neuroprotection by neuregulin-1 following
    focal stroke is associated with the attenuation of
    ischemia-induced pro-inflammatory and stress gene
    expression. Neurobiol Dis 2005; 19 (3): 461-70.
    40.Xu Z, Croslan DR, Harris AE, Ford GD, Ford BD.
    Extended therapeutic window and functional
    recovery after intraarterial administration of
    neuregulin-1 after focal ischemic stroke. J Cereb
    Blood Flow Metab 2006; 26 (4): 527-35.
    41.Geissler A, Ryzhov S, Sawyer DB. Neuregulins:
    protective and reparative growth factors in multiple
    forms of cardiovascular disease. Clin Sci (Lond)
    2020; 134 (19): 2623-43.
  3. 42.Vermeulen Z, Hervent AS, Dugaucquier L,
    Vandekerckhove L, Rombouts M, Beyens M, et al.
    Inhibitory actions of the NRG-1/ErbB4 pathway in
    macrophages during tissue fibrosis in the heart, skin,
    and lung. Am J Physiol Heart Circ Physiol 2017; 313
    (5): H934-h45.
    43.Solomon W, Wilson NO, Anderson L, Pitts S,
    Patrickson J, Liu M, et al. Neuregulin-1 attenuates
    mortality associated with experimental cerebral
    malaria. J Neuroinflammation 2014; 11: 9.
    44.Shi L, Bergson CM. Neuregulin 1: an intriguing
    therapeutic target for neurodevelopmental disorders.
    Transl Psychiatry 2020; 10 (1): 190.
    45.Maenhoudt N, Defraye C, Boretto M, Jan Z,
    Heremans R, Boeckx B, et al. Developing Organoids
    from Ovarian Cancer as Experimental and Preclinical
    Models. Stem Cell Rep 2020; 14 (4): 717-29.
    46.Xu J, Guo C, Liu Y, Wu G, Ke D, Wang Q, et al.
    Nedd4l downregulation of NRG1 in the mPFC
    induces depression-like behaviour in CSDS mice.
    Transl Psychiatry 2020; 10 (1): 249.
    47.Wang W, Qiao Y, Qu H, Zhu L, Mu L, Li C, et al. The
    protective role of Neuregulin1-ErbB4 signaling in a
    chronic social defeat stress model. Neuroreport 2020;
    31 (9): 678-85.