عملکرد ضد باکتریایی پپتید ترکیبی MELITININ+BMAP-27 بر سویه های استافیلوکوکوس اورئوس و سودوموناس آئروژینوزا

نویسندگان

1 دانشجوی دکتری، گروه زیست شناسی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت،ایران

2 استاد،گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم،ایران

3 استادیار،گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی جهرم، ایران

4 دانشیار میکروبیولوژی،گروه زیست شناسی، دانشکده علوم پایه، دانشگاه جامع امام حسین (ع)، ایران

5 -استادیار، گروه زیست شناسی، واحد مرودشت، دانشگاه آزاد اسلامی،مرودشت، ایران

چکیده


مقدمه: سویه های باکتریایی دارای مقاومت چندگانه به سرعت گسترش یافته اند. این پژوهش با هدف طراحی و سنتز پپتید ترکیبی موثر از ترکیب دو پپتید به منظور دستیابی به بیشترین فعالیت ضد باکتریایی و ارزیابی تاثیر مهاری آن بر روی سویه های استافیلوکوکوس اورئوس و سودوموناس آئروژینوزا طراحی گردید.
روش کار: این پژوهش به صورت تجربی با سنتز یک پپتید ترکیبی از MELITININ+BMAP-27 انجام شد. سپس تاثیر ضد باکتریایی این پپتید ترکیبی بر روی سویه های استاندارد و جدایه های بالینی استافیلوکوکوس اورئوس و سودوموناس آئروژینوزا ارزیابی گردید.
یافته ها: سودوموناس آئروژینوزا و استافیلوکوکوس اورئوس در غلظت 0.1 % پپتید ترکیبی به ترتیب  هاله عدم رشد 15 و 16 میلی متر و در غلظت 0.5 % به ترتیب هاله عدم رشد 19 و 20 میلی متر را نشان دادند. سویه های بالینی هردو گونه باکتری نسبت به سویه های استاندارد مقاومت بالاتری نسبت به آنتی بیوتیک ها و پپتید ترکیبی نشان دادند. در برخی از غلظت ها، ترکیب پپتید ترکیبی وآنتی بیوتیک ها موجب افزایش حساسیت فعالیت ضد باکتریایی شد، اما این تاثیر در تمامی  غلظت ها معنی دار نبود.
نتیجه گیری: پپتید ترکیبی حاصل از دوپپتید MELITININ+BMAP-27 و بر سویه های بالینی و استاندارد استافیلوکوکوس اورئوس و سودوموناس آئروژینوزا تاثیر ضد باکتریایی داشتند. نتایج نشان داد که ترکیب این پپتید با آنتی بیوتیک ها می تواند در کاهش عوارض جانبی و مقاومت آنتی بیوتیکی موثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Antibacterial performance of MELITININ - BMAP27 hybrid peptide against Staphylococcus aureus and Pseudomonas aeruginosa strains

نویسندگان [English]

  • Reyhaneh Rouhi jahromi 1
  • Mohammad Kargar 2
  • Farzan Modaresi 3
  • Shahram Nazarian 4
  • Mojtaba Jafarinia 5

1 h.D. student, Department of Biology, Marvdasht Islamic Azad University, Marvdasht, Iran

2 Ph.D, Professor of Microbiology, Department of Microbiology, Jahrom Islamic Azad University, Jahrom, Iran

3 Assistant Professor, Department of Microbiology, Jahrom University of Medical Sciences, Iran

4 Associate Professor of Microbiology, Department of Biology, Imam Hossein University, Iran

5 Assistant Professor, Department of Biology, Marvdasht Islamic Azad University, Marvdasht, Iran

چکیده [English]

Introduction: Multiple drug-resistant (MDR) bacterial strains have spread in different parts of hospitals. The aim of this study was to design and synthesize an effective hybrid peptide by combining different parts of two peptides to achieve the highest antibacterial activity and its inhibitory effect against Staphylococcus aureus and Pseudomonas aeruginosa strains.
Materials and Methods: From two antimicrobial peptides MELITININ + BMAP27, a hybrid peptide of the both peptides was considered and synthesized. The antibacterial effect of this peptide on Staphylococcus aureus and Pseudomonas aeruginosa strains was determined.
Results: P. aeruginosa exhibited a growth inhibition zone with a diameter of 15 mm and S. aureus by creating a growth inhibition zone of 16 mm in diameter. Further, at 0.5% peptide concentration, P. aeruginosa exhibited a growth inhibition zone with a diameter of 19 mm and S. aureus outlined a growth inhibition zone with a diameter of 20 mm against peptide. Clinical strains from both bacterial species demonstrated higher resistance rates to antibiotics and peptides. In some concentrations, the combination of peptides and antibiotics increased the susceptibility of bacterial species but was not significant in all concentrations.
Conclusion: A hybrid peptide consisting of two peptides, melitinin and BMAP-27, has antibacterial effect on clinical and standard strains of Staphylococcus aureus and Pseudomonas aeruginosa. The combination of this peptide with antibiotics can be effective in reducing side effects and antibiotic resistance.

کلیدواژه‌ها [English]

  • Hybrid Peptide
  • Melitinin
  • BMAP-27
  • Staphylococcus aureus
  • Pseudomonas aeruginosa
  • Antibacterial effect
1. Kim, M.K., et al., Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Scientific reports, 2018. 8(1): p. 1-16. 2. Ekrami, A. and E. Kalantar, Bacterial infections in burn patients at a burn hospital in Iran. Indian Journal of Medical Research, 2007. 126(6): p. 541. 3. Morita, Y., J. Tomida, and Y. Kawamura, Responses of Pseudomonas aeruginosa to antimicrobials. Frontiers in microbiology, 2014. 4: p. 422. 4. Farajzadeh Sheikh, R., Meqdadi, Nazarzadeh, Shakoori Fard. , Evaluation of antibiotic susceptibility pattern of Staphylococcus aureus isolated from clinical specimens of patients admitted to Ahvaz teaching hospitals against antibiotics of methicillin, vancomycin, linezolid and macrolides in 2013. Jundishapur Medical Journal,, 2013. 13 (4): p. p.74. (in Persian). 5. Wimley, W.C., Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS chemical biology, 2010. 5(10): p. 905-917. 6. Pasupuleti, M., A. Schmidtchen, and M. Malmsten, Antimicrobial peptides: key components of the innate immune system. Critical reviews in biotechnology, 2012. 32(2): p. 143-171. 7. Nabiuni, M., et al., A review onantineoplastic effects of honey bee venom. Zahedan J Res Med Sci, 2012. 13(9): p. 1-7. 8. Subbalakshmi, C., R. Nagaraj, and N. Sitaram, Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS letters, 1999. 448(1): p. 62-66. 9. Lazarev, V., et al., Effect of induced expression of an antimicrobial peptide melittin on Chlamydia trachomatis and Mycoplasma hominis infections in vivo. Biochemical and biophysical research communications, 2005. 338(2): p. 946-950. 10. Yun, S.-W., et al., Melittin inhibits cerulein-induced acute pancreatitis via inhibition of the JNK pathway. International immunopharmacology, 2011. 11(12): p. 2062-2072. 11. Azad, Z.M., et al., In vitro synergistic effects of a short cationic peptide and clinically used antibiotics against drug-resistant isolates of Brucella melitensis. Journal of medical microbiology, 2017. 66(7): p. 919-926. 12. Moghaddam, M.M., et al., Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World Journal of Microbiology and Biotechnology, 2014. 30(5): p. 1533-1540. 13. Yang, S., et al., Structural analysis and mode of action of BMAP-27, a cathelicidin-derived antimicrobial peptide. Peptides, 2019. 118: p. 170106. 14. Ho Wong, J., X. Juan Ye, and T. Bun Ng, Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Current Protein and Peptide Science, 2013. 14(6): p. 504-514. 15. Sahoo, B.R., et al., Mechanistic and structural basis of bioengineered bovine Cathelicidin-5 with optimized therapeutic activity. Scientific reports, 2017. 7(1): p. 1-16. 16. Benincasa, M., et al., In vitro and in vivo antimicrobial activity of two α-helical cathelicidin peptides and of their synthetic analogs. Peptides, 2003. 24(11): p. 1723-1731. 17. Birla, S., et al., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology, 2009. 48(2): p. 173-179. 18. Wiegand, I., K. Hilpert, and R.E. Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 2008. 3(2): p. 163-175. 19. Mahlapuu, M., et al., Antimicrobial peptides: an emerging category of therapeutic agents. Frontiers in cellular and infection microbiology, 2016. 6: p. 194. 20. Al Tall, Y., et al., Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infection and drug resistance, 2019. 12: p. 1035. 21. Sadri, H., Evaluation of antibiotic resistance of Pseudomonas aeruginosa isolated from patients in Tehran hospitals in 2013. . Bimonthly Journal of Shahed University, , 2013. 23 (121): 37-29 (in persian). 22. Foladi A, R., Shapoori. , Antibiotic resistance and abundance of broad-spectrum beta-lactamases in Pseudomonas aeruginosa strains isolated from clinical specimens. Journal of Ardabil University of Medical Sciences,, 2010. . 10 (3): p. 189-98.(in persian). 23. Bahar, M.A., S. Jamali, and A. Samadikuchaksaraei, Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-β-lactamase gene blaVIM in a level I Iranian burn hospital. Burns, 2010. 36(6): p. 826-830. 24. Sadeghi, A., B. Rahimi, and M. Shojapour, Molecular detection of metallo--lactamase genes blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2 and blaSPM-1 in Pseudomonas aeruginosa isolated from hospitalized patients in Markazi province by Duplex-PCR. African Journal of Microbiology Research, 2012. 6(12): p. 2965-2969. 25. Gales, A.C., et al., Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. Journal of Antimicrobial Chemotherapy, 2003. 52(4): p. 699-702. 26. Satti, L., et al., In vitro efficacy of Cefepime against multi-drug resistant Pseudomonas aeruginosa–an alarming situation in our setup. The Open Drug Resistance Journal, 2011. 1(1). 27. Ozer, B., et al., Efflux pump genes and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from lower respiratory tract infections acquired in an intensive care unit. The Journal of antibiotics, 2012. 65(1): p. 9-13. 28. Mahfoud, M., M. Al Najjar, and A.R. Hamzeh, Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria. The Journal of Infection in Developing Countries, 2015. 9(02): p. 210-213. 29. Shahcheraghi F, N.V., Metalobetalactamase enzyme and detection the resistance to ceftazidime and imipenem antibiotics in Pseudomonas aeruginosa isolated from clinical speciments in hospital of Imam khomeini and pediatrics medical center in 2005. Iranian Journal of Infectious Disease and Tropical Medicine. ;, 2007. 12((36): ): p. 19-22. 30. Anjum, F. and A. Mir, Susceptibility pattern of Pseudomonas aeruginosa against various antibiotics. African Journal of Microbiology Research, 2010. 4(10): p. 1005-1012. 31. Amiri, A., Evaluation of drug resistance of Staphylococcus aureus strains resistant to the antibiotic vancomycin in some hospitals in Rasht. Journal of Medical Sciences,, 2018. . 28 (1): : p. p. 74-80. (in Persian). 32. Tabaei, N.K., Mohammadzadeh, Atai, Dar Aj, Saeed. Mashhad. Journal of Mashhad University of Medical Sciences, , Pattern of antibiotic resistance in methicillin-resistant Staphylococcus aureus strains isolated from clinical specimens: Imam Reza (AS) Hospital, . 2016. . 59 (2):: p. p. 64-70. (in Persian). 33. Nourbakhsh F, M.H., Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015. Feyz., 2015. 19 (4) :: p. p. 356-363.(in Persian). 34. Javadmanesh, M., Tanhayan, Abbas, Azghandi, Marjan. , Comparison of antibacterial effects of tanatine peptide with two essential oils of cinnamon and oregano on isolates of pathogenic bacteria. . Veterinary research and biological products,, 2020. 33 (1): p. p. 47-53. (in Persian). 35. Gholami A, A.M.R., Ahmadi M. , Evaluation of antibacterial activity of aqueous and methanol extracts of Allium Jesdianum plant on a number of pathogenic bacteria resistant to antibiotics. . psj,, 2016. 14 (4) :: p. p. 18-26. (in Persian). 36. Tian, Z.-g., et al., Design and characterization of novel hybrid peptides from LFB15 (W4, 10), HP (2-20), and cecropin A based on structure parameters by computer-aided method. Applied microbiology and biotechnology, 2009. 82(6): p. 1097-1103. 37. Wanmakok, M., et al., Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene, 2018. 671: p. 1-9. 38. Faccone, D., et al., Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. European journal of medicinal chemistry, 2014. 71: p. 31-35. 39. Jiang, X., et al., Design and activity study of a melittin–thanatin hybrid peptide. AMB Express, 2019. 9(1): p. 1-6. 40. Wu, R., et al., Design, characterization and expression of a novel hybrid peptides melittin (1–13)-LL37 (17–30). Molecular biology reports, 2014. 41(7): p. 4163-4169.