تأثیر تمرین تناوبی با شدت بالا روی محتوای پروتئین‌های گیرنده فعال‌شده تکثیرکننده پراکسی زوم گاما (Peroxisome proliferator-activated receptor gamma) و دامنه PR حاوی 16 (PR domain containing 16) در بافت چربی موش‌های صحرایی نر اسپراگوداولی مبتلا به دیابت نوع 2 دارای اضافه وزن


1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، گروه علوم ورزشی، دانشگاه شیراز، شیراز، ایران

2 دانشیار فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، گروه علوم ورزشی، دانشگاه شیراز، شیراز، ایران


مقدمه: پروتئین‌های PPAR-γ (Peroxisome proliferator-activated receptor-gamma) و PRDM16 (PRdomaincontaining16) پروتئین‌های کلیدی در تنظیم بافت چربی و تبدیل بافت چربی سفید به قهوه‌ای هستند. دیابت نوع 2 می‌تواند در عملکرد این دو پروتئین اختلال ایجاد کرده و باعث کاهش فعالیت عملکردی آن ها شود. هنوز نقش تمرین تناوبی با شدت بالا (HIIT; high-intensity interval training) بر این دو پروتئین در بافت چربی زیرجلدی بررسی نشده است. هدف از مطالعه حاضر، بررسی تأثیر HIIT بر محتوای این دو پروتئین در بافت چربی زیرجلدی موش‌های صحرایی نر اسپراگوداولی مبتلا به دیابت نوع 2 دارای اضافه وزن است.
روش کار: در این مطالعه، شانزده سر موش صحرایی نر دو ماهه از نژاد اسپراگوداولی با میانگین وزن 20±270 گرم انتخاب و پس از دیابتی شدن از طریق القاء STZ و نیکوتین‌آمید به روش تصادفی به دو گروه، تمرین (8 سر) و کنترل (8 سر) تقسیم ‏شدند. گروه تمرینی چهار روز در هفته مطابق با برنامه تمرینی به‏ مدت هشت هفته به فعالیت ورزشی پرداختند و گروه کنترل هیچ‌گونه برنامه تمرینی نداشتند. برای تجزیه ‌و تحلیل داده‌ها از آزمون t مستقل استفاده‏ شد.
یافته‌ها: افزایش معنادار محتوای پروتئین‌ PRDM16 (p<0.001) در گروه‌ تمرین نسبت به کنترل مشاهده شد، اما این افزایش در محتوای پروتئین PPAR-γ معنادار نبود (0.26=p).
نتیجه‌گیری: با توجه به نتایج پژوهش حاضر، HIIT باعث افزایش معنادار محتوای پروتئین PRDM16 شده است که نقش بسیار مهمی در تبدیل سلول‌های چربی سفید به قهو‌ه‌ای دارد. بنابراین، امید است از این راه بینش جدیدی در مورد ریشه، تمایز و نگهداری بافت چربی سفید و تبدیل آن به بافت چربی قهوه‌ای به دست آید.


عنوان مقاله [English]

The Effect of High-Intensity Interval Training on the Level of Peroxisome proliferator-activated receptor gamma and PR domain containing 16 Proteins in Adipose Tissue in Overweight Type 2 Diabetic Male Sprague-Dawley Rats

نویسندگان [English]

  • Maryam Shabani 1
  • Mohsen Salesi 2
  • Farhad Daryanoosh 2

1 Department of Physical Education, School of Education and Psychology, Shiraz University, Shiraz, Iran

2 Department of Physical Education, School of Education and Psychology, Shiraz University, Shiraz, Iran

چکیده [English]

Introduction: PPAR-γ and PRDM16 proteins are key proteins in the adipose tissue regulation and the white tissue
conversion to the brown and beige adipose tissue. Type 2 diabetes can interfere with the function of these two proteins and, functionally, leads to reduced activity of these proteins. The role of exercise on these two important proteins has not been studied yet in subcutaneous adipose tissue. The purpose of the present study was to investigate the effect of high-intensity interval training (HIIT) on the level of PPAR-γ and PRDM16 proteins in adipose tissue in overweight type 2 diabetic male Sprague-Dawley rats with diabetes.
Materials & Methods: In this study, 16 two-month-old Sprague-Dawley rats with a mean weight of 270±20 g were selected. After diabetic induction with STZ and Nicotinamide, rats were randomly assigned to two groups, training (8 heads) and control (8 heads). The training group trained for 4 days a week in accordance with the training program for 8 weeks, while the control group did not have any training program. The independent t-test was used to analyze the data of PPAR-γ and PRDM16 proteins.
Results: There was a significant rise in PRDM16 protein content (p<0.001) in the training group compared to control, though this rise was not meaningful in PPAR-γ protein content (p=0.26).
Conclusion: HIIT training has led to a significant increase in the content of the PRDM16 protein, which plays a vital
role in the conversion of white to brown fat cells. Hence, it is expected that a new insight into the root, differentiation, and preservation of the white adipose tissue and its conversion into brown adipose tissue will be achieved.

کلیدواژه‌ها [English]

  • Adipose tissue
  • High Intensity Interval Training
  • PPAR-γ
  • PRDM16
1. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. The Journal of clinical investigation 2011;121(6):2094-101. 2. Zafrir B. Brown adipose tissue: research milestones of a potential player in human energy balance and obesity. Horm Metab Res 2013; 45(11): 774-85. 3. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiological reviews 2013; 93(1):359-404. 4. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annual review of immunology 2011; 29: 415-45. 5. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nature reviews Disease primers 2015; 1-22. 6. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382):463-468. 7. Enteshary M, Esfarjani F, Reisi J. The Comparison of 8 week combined training with two different intensity on level of serum Irisin, and glycemic indices of type 2 diabetic women. medical journal of mashhad university of medical sciences 2018; 61(2):971-84. 8. Ishibashi J, Seale P. Functions of Prdm16 in thermogenic fat cells. Temperature 2015; 2(1):65-72. 9. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell metabolism 2014; 19(4):593-604. 10. Harms MJ, Lim HW, Ho Y, Shapira SN, Ishibashi J, Rajakumari S, et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev 2015; 29(3): 298-307. 11. Koppen A, Kalkhoven E. Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett 2010; 584(15): 3250-3259. 12. Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 2013; 33(5): 711-719. 13. Janani C, Kumari BR. PPAR gamma gene–a review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2015; 9(1):46-50. 14. Xu L, Ma X, Verma NK, Wang D, Gavrilova O, Proia RL, et al. Ablation of PPAR γ in subcutaneous fat exacerbates age‐associated obesity and metabolic decline. Aging cell 2018; 17(2):1-10. 15. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118(4):346-354. 16. Corte de Araujo AC1, Roschel H, Picanço AR, do Prado DM, Villares SM, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One. 2012; 7(8): 1-8. 17. Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. Journal of Obesity 2012; 1-8. 18. Porcari J, Bryant C, Comana F. Exercise physiology. FA Davis 2015; 36-62. 19. Fatone C, Guescini M, Balducci S, Battistoni S, Settequattrini A, Pippi R, et al. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with Type 2 diabetes mellitus and metabolic syndrome. Journal of endocrinological investigation 2010; 33(7):489-95. 20. Petridou A, Tsalouhidou S, Tsalis G, Schulz T, Michna H, Mougios V. Long-term exercise increases the DNA binding activity of peroxisome proliferator–activated receptor γ in rat adipose tissue. Metabolism 2007; 56(8): 1029-1036. 21. Ringholm S, Knudsen JG, Leick L, Lundgaard A, Nielsen MM, Pilegaard H. PGC-1α is required for exercise-and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PloS one 2013; 8(5): 1-6. 22. Fathi R, Ebrahimi M, Sanami SK. Effects of High Fat Diet and High Intensity Aerobic Training on Interleukin 6 Plasma Levels in Rats. Pathobiology Research 2015; 18(3):109-16. 23. Safhi MM, Anwer T, Khan G, Siddiqui R, Moni Sivakumar S, Alam MF. The combination of canagliflozin and omega-3 fatty acid ameliorates insulin resistance and cardiac biomarkers via modulation of inflammatory cytokines in type 2 diabetic rats. The Korean J Physiolo Pharmacol 2018; 22(5):493-501. 24. Khalili A, Nekooeian AA, Khosravi MB. Oleuropein improves glucose tolerance and lipid profile in rats with simultaneous renovascular hypertension and type 2 diabetes. J Asian nat prod Res 2017; 19(10):1011-21. 25. Fallahi A, Gaeini A, Shekarfroush S, Khoshbaten A. Cardioprotective effect of high intensity interval training and nitric oxide metabolites (NO2−, NO3−). Iranian journal of public health 2015; 44(9):1270-1276. 26. Khani M, Motamedi P, Dehkhoda MR, Nikukheslat SD, Karimi P. Effect of thyme extract supplementation on lipid peroxidation, antioxidant capacity, PGC-1α content and endurance exercise performance in rats. J Int Soc Sports Nutr 2017; 14 (1): 1-8. 27. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & development. 2008; 22(10):1397-409. 28. Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell metabolism. 2015; 22(4):546-59. 29. Afshari S, Kordi M.R, Mohammad-Amoli M, Daneshyar S. The Effect of Continuous Aerobic Training (CAT) and High Intensity Interval Training (HIIT) on Gene Expression of positive regulatory domain-containing protein 16 (PRDM16) in White Adipose tissue of Wistar Rats 2018; 201-210. 30. Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes 2015; 64(7):2361-2368. 31. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of clinical investigation 2011; 121(1):96-105. 32. Jeremic N, Chaturvedi P, Tyagi SC. Browning of white fat: novel insight into factors, mechanisms, and therapeutics. Journal of cellular physiology 2017; 232(1):61-8. 33. Haczeyni F, Barn V, Mridha AR, Yeh MM, Estevez E, Febbraio MA, et al. Exercise improves adipose function and inflammation and ameliorates fatty liver disease in obese diabetic mice. Obesity 2015; 23(9):1845-1855. 34. Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature reviews Molecular cell biology 2016; 17(8):480-495. 35. Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacological research 2016; 111:76-85. 36. Ghasemi S, Ghaedi K, Nasr EM, Esmaeili A. Characterization and molecular function of PPAR gamma transcription factor in human. Modern Genetics Journal 2011; 2 (25): 5-12. 37. Ghoussaini M, Meyre D, Lobbens S, Charpentier G, Clément K, Charles MA, et al. Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC medical genetics 2005; 6(1):111-118. 38. Hilton C, Karpe F, Pinnick KE. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2015; 1851(5):686-696.