The effects of Aloe Vera sap on progesterone, estrogen and gonadotropin in female rats

Poorfarid M*1, Karimi Jashni H2, Houshmand F3

Received: 02/18/2012 Revised: 07/23/2012 Accepted: 11/12/2012

1. Dept. of Evolutionary Biology, Islamic Azad University, Fars Sciences and Research Branch, Shiraz, Iran
2. Dept. of Anatomy, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
3. Dept. of Pathology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran

Journal of Jahrom University of Medical Sciences, Vol. 10, No. 4, Winter 2013

Abstract

Introduction:
Aloe Vera or yellow Sabr is a durable plant belonging to Sousanian family. This plant has a strange potential to treat scars and burns. Aloe Vera leaf has antimicrobial and anticancer attributes. This study is designed to assess the probable effects of Aloe Vera sap on progesterone, estrogen and gonadotropin in female rats.

Materials and Methods:
In this experimental study, 40 female rats with the mean weight of 180 ± 20 gr were divided into five groups of control, sham, and intervention groups 1, 2, and 3. The control group did not receive any drug. The sham group only received 2 ml distilled water. Intervention groups received 50, 100 and 200 mg/kg hidroalcoholic extract of Aloe Vera during 10 days orally (equal to 2 sexual cycles). Finally, the rats were anesthetized using ether and blood samples were taken through their ventricles. Blood serum was extracted and the serum concentration of estrogen, progesterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) was measured using immunoassay. Data were analyzed using one-way ANOVA.

Results:
The mean serum level of estrogen was significantly higher in intervention groups 2 (100 mg) and 3 (200 mg) compared to the control group (P<0.05). No significant difference was found between the intervention groups and control group for serum level of progesterone, LH and FSH.

Conclusion:
Given these findings, the Aloe Vera sap may have favorable effects on estrogen synthesis due to its phytoestrogen components such as beta sitosterol, and can increase the estrogen level.

Keywords: Aloe vera, Estrogen, Progesterone, Gonadotropins, Rat

Introduction
The active ingredients present in plants, accompanied by other substances are in biological equilibrium. These substances do not accumulate in the body and have no side-effects, which is a great advantage over chemical drugs. The only exceptions are poisonous plants that should not be administered without accurate prescription of a doctor (1). Aloe Vera is a plant from liliopsida class, liliales order, and liliaceae genus, with over 250 species worldwide (2). In botanical terms, Aloe Vera is a perennial plant with lance-shaped, sharp
pointed, and jagged and edged leaves. Aloe Vera grows in autumn, with yellow flowers and short woody stem, to which leaves are directly attached. The leaves have a convex outer surface and a concave inner surface, and the flower is arranged in a dense cluster (3). Historically, the traditional medicinal use of this plant for skin problems and other disorders dates back thousands of years ago. The main chemical constituents of the Aloe Vera plant are Anthraquinones (Aloein, Aloe Amodin, and Coumaric Acid), polysaccharides, glycoproteins, prostaglandins, phytoestrogens such as beta-cytosterol, cholesterol, and fatty acids like camponsterol (2, 4, and 6). There are various reports on the uses of this plant for treatment of arthritis, gout, rheumatism, acne, burns, pain and gastrointestinal tract ulcers (7, 8). Aloe Vera gel causes healing of wounds and burns, lesions due to exposure to UV rays are also improved by this gel (9-11). Anti-cancer, anti-bacterial, and anti-inflammatory activities have also been observed in Aloe Vera plant, which are attributed to glycoprotein and polysaccharides (12-14). Studies also reveal use of aqueous Aloe Vera extract by women of western regions of Cameron to treat infertility (15).

A study on the effect of Aloe Vera extract on the pregnant rats’ placenta showed that use of different doses of this extract cause metabolic changes in the placenta structure, impairment and reduction in placenta function, and the reproductive system. However, it has no effect on the growth, mortality, disability, or abortion (16). In a study aiming to examine the effect of Aloe Vera on pregnant rats’ ovaries, it was found that this plant causes minimal weight gain in rats and increased vasculo-genesis around the secondary follicles. Results also showed that Aloe Vera has similar effect to estrogen and follicle-stimulating hormone (17).

A recent study on the effect of this plant on testosterone and gonadotropin hormones in adult male rats also showed that hydro-alcoholic extract of this plant has an anti-androgenic property that can reduce androgen-dependent parameters including secretion of gonadotropins and probably cause oligosperma (18).

Given the limited information available on the effect of this plant on the reproductive system, and also considering different compositions of Aloe Vera plant including Aloe Amodin, and Phytoestrogens such as Beta-cytosterol, it is possible that these compounds could affect sex hormones. Thus, the present study was conducted with the aim to examine the effect of hydro-alcoholic Aloe Vera leaf extract on estrogen, progestogen, and gonadotropin hormones in female rats.

Materials and Methods

In this experimental study, 40 adult female Wistar rats were used. On the first day of the study, rats were aged 2-3 months and weighed 180±20 grams. They were kept in 12 hour light/dark cycle. The temperature was 23±3 °C round the clock, and compressed food and water were available ad lib. The rats were divided into 5 groups of 8 as follows:

Control group: The rats in this group were given food and water ad lib for the duration of the experiment.

Case group: The rats in this group received food and water ad lib. Additionally, the same as the experimental groups and concurrently, they orally received 2 ml of distilled water.

Experiment groups: The experiment groups 1, 2, and 3 received 50, 100, 200 mg/kg weight hydro-alcohol Aloe Vera extract, respectively for 10 days (equivalent to two sex cycles). The extract was administered to the rats in the estrous cycle. When this period had elapsed, with performing vaginal smear test, those rats that had reached the stage of sexual estrous cycle were selected, weighed, and anesthetized with ether. Then, blood samples were taken from the heart ventricle. Blood samples were centrifuged at 3000 rpm for 10 minutes to separate the
blood serum. Hormone measurement was performed according to the usual laboratory methods (RIA) with a Gamma counter.

Preparation of Aloe Vera extract
The extract was prepared with the standard method of soaking and percolation. To do this, 200 grams of chopped fresh plant leaves in 1000 ml of 50% ethanol were percolated for 72 hours. Then, using a rotary device, the excess solvent was separated from the extract. The resulting powder from desiccation process was dissolved in distilled water at 50, 100, and 200 mg doses. Equal volume of distilled water (2 ml) was used for all doses.

Analysis of data
All groups’ data were coded in prepared tables and input in SPSS software. For analysis of data, one-way ANOVA and post hoc tests were used. Significant level was considered at P=0.05

Results
Statistical analyses were performed and mean estrogen, progesterone, luteinizing, and follicle-stimulating hormones in control, case, and experiment groups were compared.

Analysis of the effect of different amounts of Aloe Vera hydro-alcohol extract on the serum estrogen hormone concentration showed a significant difference between experiment groups, control and case groups (P=0.02). Using post hoc LSD test, a difference in mean values between experiment group 2 (20.1±7.97) and control group (10.35±4.77), the experiment group 2 (20.1±7.97) and case group (10.35±2.5), experiment group 3 (19.61±8.99) and control group (10.35±4.77), experiment group 3 (19.61±8.99) and case group (10.35±2.5) was observed. (P=0.018, P=0.013, and P=0.013) (Chart 1)

Analysis showed that the amounts of 50 and 100 mg/kg weight of Aloe Vera hydro-alcohol extract reduced serum progesterone hormone concentrations in experiment groups. But, this reduction between experiment groups, control and case was statistically insignificant. Analysis showed that the amounts of 50 and 100 mg/kg weight of Aloe Vera hydro-alcohol extract reduced serum...
luteinizing hormone concentrations in experiment groups. But, this reduction between experiment groups, control and case was statistically insignificant. Also, in the experiment group 3 with a dose of 200 mg/kg weight, serum concentration of this hormone increased, but compared to the control group, this increase was insignificant.

The analysis of the effect of different amounts of Aloe Vera extract on serum follicle-stimulating hormone showed that concentration of these hormones in 50, 100, 200 mg/kg weight doses in the experiment groups reduced. But, this reduction between experiment groups, control and case was statistically insignificant.

Discussion

The results did not show any significant difference in gonadotropins and progesterone in experiment groups receiving 50, 100, and 200 mg/kg weight Aloe Vera extract compared to the control group. But, estrogen concentrations significantly increased in experiment groups receiving 100 and 200 mg/kg weight.

Tilifo et al. in 2004 showed that Aloe Vera plant extract contains compound that increase ovarian steroidogenesis and serum estrogen concentration (19), which is in agreement with the findings of the present study. Also, since Aloe Vera plant extract has similar effects to follicle-stimulating hormones effects on the ovaries (16), hence, it functions in a similar manner, and causes an increase in growth and development of follicles and consequently, an increase in estrogen secretion from follicular cells.

Administration of Aloe Vera extract caused a reduction in serum luteinizing hormone concentration, but insignificantly. The reduction in concentration of this hormone could be explained by phytoestrogen influence on hypothalamus and inhibition of activity of cells that produce gonadotropin-releasing hormones, causing cessation of hypothalamus, hypophase, and gonad axis (20).

In a study on Aloe Vera extract effect on male rats’ sex hormones, no significant change was observed in the level of luteinizing hormone (18), which was in agreement with results of this study.

Roberts et al. in 2000 showed that luteinizing hormone levels in rats exposed to genitein (a type of phytoestrogen) were reduced (21). Studies by Mc Gravy et al. on a phytoestrogen rich diet in humans and animals showed that compsterol inhibited secretion of luteinizing hormone (20). Since secretion of progesterone is dependent on luteinizing hormone, then with reduced luteinizing hormone, progesterone is also reduced, but not significantly.

According to the studies on the effect of Aloe Vera extract on pregnant rats’ ovaries, it was observed that this plant causes increased number of secondary follicles, reduction in dimensions of secondary follicles, and increased vascular filling state. Development of secondary follicle totally depends on secretion of follicle-stimulating hormone, and Aloe Vera has a similar effect to follicle-stimulating hormone in female rats. All these effects are similar to estrogen effects on the reproductive system (17).

Mutual reaction with steroid ligand causes the onset of genetic duplication of specific estrogen receptor and this leads to advancement of specific messenger RNAs production. There are estrogen and progesterone receptors among many proteins that are produced in most estrogen responsive cells, and it has been found that beta-cytosterol compound present in Aloe Vera has biological activity of estogenesis (23). It seems that, with its biological activities, this compound has an important role in increasing estrogen.

Conclusion

According to the results obtained in this study, different amounts of Aloe Vera hydro-alcohol extract cause an increase in
The effects of Aloe Vera sap

Poorfarid et al

Journal of Jahrom University of Medical Sciences, Vol. 10, No. 4, Winter 2013

10

estrogen hormone in female rats. It appears that use of this plant could have positive effects on the process of fertility.

The present article is part of the thesis submitted for the Master’s Degree by the first author, which was financed by Jahrom University of Medical Sciences.

References: