چکیده:
فراوانی پایتختی می‌شوند. اما بیشترین تعداد آن‌ها در محیط‌های سرشار از مواد سیمانی همچون نمکی‌های بیولوژیکی قابلیت تغذیه‌ای باکتری‌ها و جوی‌های آزاد را به دست می‌آوردند. با توجه به این‌که نمک‌های ازدست گرفته‌های آب‌های گرم‌شناسی از شرایط محیطی در محیط‌های آب‌های گرم‌شناسی ویژه‌های مورفولوژیکی

نوبت‌دی‌ان: شکوفه قدمرنگ جنگلی، گاوس صلحویه، محمد حدیث‌زاده، ریحانه روحی، سمانه ضایعه‌ی گرم‌شناسی

1- ارزان‌شناسی میکروپیلوزی، شرکت بی فعال‌سازی شیراز، شیراز، ایران
2- گروه میکروبیولوژی، دانشگاه علوم پزشکی جهرم، جهرم، ایران
3- گروه میکروپیلوزی، دانشگاه آزاد اسلامی واحد جهرم، جهرم، ایران
4- گروه زیست‌شناسی - آبی‌شناسی، دانشگاه پیام نور، جهرم، ایران

Journal of Jahrom University of Medical Sciences, Volume 10, Number 3, Fall 2012

چکیده:
فراوانی پایتختی می‌شوند. اما بیشترین تعداد آن‌ها در محیط‌های سرشار از مواد سیمانی همچون نمک‌های بیولوژیکی قابلیت تغذیه‌ای باکتری‌ها و جوی‌های آزاد را به دست می‌آوردند. با توجه به این‌که نمک‌های ازدست گرفته‌های آب‌های گرم‌شناسی از شرایط محیطی در محیط‌های آب‌های گرم‌شناسی ویژه‌های مورفولوژیکی

نوبت‌دی‌ان: شکوفه قدمرنگ جنگلی، گاوس صلحویه، محمد حدیث‌زاده، ریحانه رروحی، سمانه ضایعه‌ی گرم‌شناسی

1- ارزان‌شناسی میکروپیلوزی، شرکت بی فعال‌سازی شیراز، شیراز، ایران
2- گروه میکروبیولوژی، دانشگاه علوم پزشکی جهرم، جهرم، ایران
3- گروه میکروپیلوزی، دانشگاه آزاد اسلامی واحد جهرم، جهرم، ایران
4- گروه زیست‌شناسی - آبی‌شناسی، دانشگاه پیام نور، جهرم، ایران
روش کار:
در این مطالعه مقطعی- توسیعی از 70 حلقه 100 متری و 20 شرکت بی‌پریز آب در تمام مناطق شیراز بین هزاره 1388 تا 1398 شمسی بررسی شده و بر اساس کیفیت آب موجود در آنها از طریق شیمیایی، سوخته، سلولار، ترکیبات آلی و آلی و غیره دستگاه اندازه‌گیری کار، همواره در صورتی که نشان دهنده یک ترکیب متنوع از عوامل هستند، در مطالعاتی که به آب پوششی و کیفیت آب مربوط می‌شوند، از طریق شیمیایی، بیولوژی و فیزیولوژی کار می‌کنند.
استریل و در کنار شله به صورت وارونی روى مهتری کشت آگر

بیشتر از دقت انتخابی سیس K12 ثبتشده شده

برق، قرار داده شد. اطراف پیت با پیشرفت سدو و سیس

محیطها در دمای 41 تا 30 درجه استاندارد کرده شد. به

منظر تشخیص آمیپ از زون هر روز به مشاهده

میکروپویی‌ها مهتری کشت با مهندسی ۶:۷ نمونه کیت از

نظر آمیپ شناسا شده (نقطه شناختی مهتری کشت دال بر

و جود آمیپ اسپ). معمولاً ۴۴ از کشه روز درون پیت-

های مثبت تعداد بیابی کشت و تروپوزیون مشاهده می‌شود.

سایر نمونه‌ها عمدتاً تا یک ماه بعد از شروع کشت هر روز با

میکروپویی‌ها و اینو مورد بررسی قرار گرفته و در زیر

میکروپویی‌ها از آن عکس گرفته شد. در تهیه، بعد از کشش

یک ماه در صورت عدم مشاهده آمیپ، نتیجه کشت منفی

گزارش شد. [۲۰ و ۲۱].

می‌توان با توجه به اینکه کشت به شکل توصیفی تجزیه و تحلیل شنده.

یافته‌ها:

در این تحقیق از ۳۰۰ نمونه جمع‌آوری شده، ۴۲ نمونه (۳۹ درصد) از نظر واحد آمیپ‌های آزادی مثبت بودند (جدول ۱)، به طور کلی همه نمونه‌های آب از نظر پارامترهای فیزیکی و

شیمیایی در محدوده طبیعی قرار داشتند (جدول ۲). نتایج نشان داد که از ۴۲ نمونه مثبت از نظر دارای بودن آمیپ‌های آزادی

۲۹ نمونه (۱۶ درصد) مثبت از نظر دارای بودن آمیپ‌های آزادی

و ۱۳ نمونه (۶ درصد) فاقد ایمپیلیمنه کار و ۳ نمونه (۵/۱۲ درصد) حاوی کار ایمپیلیمنه بودند.

<table>
<thead>
<tr>
<th>جمع (درصد)</th>
<th>وجود آمیپ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۲ (۱۰۰٪)</td>
<td>۳۹ (۱۰۰٪)</td>
</tr>
<tr>
<td>۴۲ (۱۰۰٪)</td>
<td>۲۹ (۶۹٪)</td>
</tr>
<tr>
<td>۴۲ (۱۰۰٪)</td>
<td>۱۳ (۳۰٪)</td>
</tr>
<tr>
<td>۴۲ (۱۰۰٪)</td>
<td>۰ (۰٪)</td>
</tr>
</tbody>
</table>

بررسی میکروبی ۱۲۰ نمونه آب نشان داد که ۱۶ نمونه (۳۸ درصد) از نظر

کلفیانشگاهی هرماهیjak مثبت بودند. اما ارتباط متعادلی بین

آمیپ‌ها بر اساس آمیپ‌های آزادی و وجود کلفیانشگاهی نشان داد.

درصد) از نظر کلفیانشگاهی کم و ۲۳ نمونه (۳۱ درصد) از نظر

کلفیانشگاهی‌های هرماهی مثبت بودند، اما ارتباط متعادلی بین

آمیپ‌ها بر اساس آمیپ‌های آزادی و وجود کلفیانشگاهی نشان داد.

درصد) از نظر کلفیانشگاهی کم و ۲۹ نمونه (۲۴ درصد) از نظر

کلفیانشگاهی‌های هرماهی مثبت بودند، اما ارتباط متعادلی بین

آمیپ‌ها بر اساس آمیپ‌های آزادی و وجود کلفیانشگاهی نشان داد.

ارتباط متعادلی بین

آمیپ‌ها بر اساس آمیپ‌های آزادی و وجود کلفیانشگاهی نشان داد.
جدول 2: میانگین کم ترین و بیشترین مقدار پاراترمهای فیزیکی و شیمیایی نمونه های آب

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>کمترین</th>
<th>بیشترین</th>
<th>غیر از</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کورتی</td>
<td>0.09</td>
<td>2.33</td>
<td>0.12</td>
<td>1.28</td>
</tr>
<tr>
<td>گاز (ppm)</td>
<td>0.13</td>
<td>1.32</td>
<td>0.10</td>
<td>0.59</td>
</tr>
<tr>
<td>دما (°C)</td>
<td>19.0</td>
<td>19.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>pH</td>
<td>7.42</td>
<td>7.68</td>
<td>7.68</td>
<td>7.68</td>
</tr>
<tr>
<td>آمیانک</td>
<td>0.28</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>نیترات</td>
<td>1.42</td>
<td>1.42</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>نیترات</td>
<td>1.42</td>
<td>1.42</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>هیاتا (mg/Liter)</td>
<td>994.99</td>
<td>375.21</td>
<td>375.21</td>
<td>375.21</td>
</tr>
<tr>
<td>سختی آب (mg/Liter)</td>
<td>588.32</td>
<td>55.20</td>
<td>55.20</td>
<td>55.20</td>
</tr>
</tbody>
</table>

شکل 1: فرم نازکدار (X - 40X) و آمیس نگلی درون محیط کشت

بررسی محیط‌های کشت با استفاده از میکروسکوپ نوری نشان داد که 43 نمونه در این شکل شبیه ترپوزوزیت دارای A. griffini، A. castellani، A. asteronyxis، A. hatchetti، A. rhysodes، A. polyphaga، A. divionensis، A. triangularis، A. lugdunensis، A. paradivionensis بوده‌اند.

نتایج تحقیق نشان داد که در 32 نمونه آب به آمیب A. monogenе، 31 نمونه (78 درصد) به یک نوع آمیبی (نمونه 31 درصد) به نوع آمیبی آگودی (نمونه 39 درصد) و فراوانی آب به آمیبی (نمونه 14 درصد) بیشتر بود.
بحث:

در تحقیق حاضر که به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد، از ۱۲۰ نمونه آب بررسی شده، ۷۳ نمونه (۵۲ درصد) از آن‌ها نتایج بودن و ۴۷ نمونه (۳۳ درصد) به یک نمای آمیزه داشتند. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در سایر منابع آب‌تکمیل در حوزه‌ای که بررسی و تحقیق صورت گرفته است، این نتایج به یک نمای آمیزه به دست آمده است. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.

در این تحقیق به منظور شناسایی آمیزه‌های آزمایشی در منابع آب شیراز به کار برده و بررسی کیستوکوپی بر اساس ویژگی‌های مورفولوژی انجام شد. این نتایج نشان می‌دهد که آمیزه‌های آزمایشی در این مناطق احتمالاً از ترکیب مشابه برخوردارند.
References:


Isolation and identification of free living amoeba (Naegleria and Acanthamoeba) in Shiraz water resources by morphological criteria

Ghadar-ghadr Sh1, Solhjoo K2, Norouz-nejad MJ3, Rohi R2, Zia-Jahromi S4

Received: 08/06/2011 Revised: 02/17/2012 Accepted: 04/23/2012

1. Microbiology Lab, Shiraz Water and Waste Water Bureau, Shiraz, Iran
2. Dept. of Microbiology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
3. Dept. of Microbiology, Islamic Azad University, Jahrom Branch, Jahrom, Iran
4. Dept. of Geology-Hydrology, Payam Nour University, Jahrom, Iran

Journal of Jahrom University of Medical Sciences, Volume 10, Number 3, Fall 2012

Abstract

Introduction: Free living amoebas are opportunistic pathogens that usually exist in different environmental conditions such as warm and polluted water, even in water supply networks and they could cause serious diseases in humans. So, due to their medical importance, identification of free living amoeba in water resources is necessary.

Materials and Methods: Water samples were collected from 70 water wells, 30 water resources and 20 water supply networks in the first six months of 2010. Then, the samples were cultured on non-nutrient agar and the amoeba were collected and stained by Giemsa stain for morphological studies.

Results: 42 out of 120 samples (35%) contained free living amoeba. Out of them, 31 samples (73.81%) were polluted with one amoeba and 11 (26.19%) with one amoeba. The frequency of Acanthamoeba species (39 cases) was higher than that of Neagleria (14 cases) and the wells were more polluted than others (44.40%). Based on morphological characteristics, four pathogenic ameba were identified (Naegleria Fowleri, Acanthamoeba polyphaga, A.castellani and A.astronyxis).

Conclusions: The results showed that water resources contained free living amoeba and some important and pathogenic species of these amoebas were identified by morphological characteristics. Thus, it is necessary to employ new methods for disinfection and filtration of water resources so that the infection with free living amoeba and infectious agents is prevented.

Keywords: Amoeba, Acanthamoeba, Naegleria, Water Resources, Morphology

* Corresponding author, Email: solhjouk@yahoo.com