طراحی و ساخت سازه ژنی بیان کننده ایمنوتوکسین ضد EGFR VIII متصل به اگزوتوکسین A سودوموناس ائروجنوزا برای سرطان گلیوبلاستوما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای میکروب شناسی ، دانشگاه آزاد اسلامی واحد قم، قم، ایران

2 دانشیار میکروبشناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد قم، قم، ایران

3 استاد بیوتکنولوژی، مرکز تحقیقات کاربردی دارویی دانشگاه علوم پزشکی تبریز، ، تبریز، ایران

4 استادیار میکروبشناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد قم، قم، ایران

5 استادیار زیست فناوری پزشکی، دانشگاه علوم پزشکی تبریز، تبریز، ایران

چکیده

مقدمه: سرطان از رایجترین علل مرگ و میر انسانی در جوامع امروزی است که تلاش‌های بسیار گسترده‌ای برای مقابله با آن در حال انجام است. ایمونوتوکسین‌های مبتنی بر Anti-EGFRVIII می‌توانند با هدایت بخش‌های توکسینی به سلول‌های سرطانی که بیان بیش از حد گیرنده EGFRVIII دارند، منجر به مرگ سلولی آنها شوند. هدف مطالعه حاضر توسعه یک ایمونوتوکسین انسانی جدید ضد EGFRVIII (huscFv-PE38 EGFRVIII) با ادغام ژنتیکی آنتی بادی تک زنجیره ای ضد EGFRVIII انسانی با اگزوتوکسین A کوتاه شده سودوموناس آئروژینوزا (PE) (PE38KDEL) است.
روش کار: قطعه PE-38 اگزوتوکسین A با استفاده از PCR تکثیر و به PET22b-Anti-EGFRVIII huscFv متصل شد. واکنش با روش PCR وهضم آنزیمی تایید شد. ایمونوتوکسین حاصل در E. coli BL21 (plys S) بیان شد و سپس توسط ستون کروماتوگرافی Ni-NTA تخلیص شد. پس از آن، واکنش ایمونوتوکسین تخلیص شده با روش‌های الایزا و MTT مورد ارزیابی قرار گرفت.
یافته‌ها: آزمایش‌های PCRو هضم آنزیمی، صحت و یکپارچگی ساختار ایمونوتوکسین طراحی شده را تأیید کردند. تخلیص ایمونوتوکسین بیان شده توسط ستون کروماتوگرافی نیکل منجر به ساخت یک ایمونوتوکسین نوترکیب بسیار خالص با وزن مولکولی ۶۳ کیلو دالتون در ژل SDS-PAGE شد.
نتیجه‌گیری: نتایج  مطالعه حاضر نشان داد که ایمونوتوکسین طراحی شده می‌تواند به عنوان یک انتخاب امیدوارکننده برای مهار سولهای سرطانی EGFRVIII مثبت در نظر گرفته شود.

کلیدواژه‌ها

عنوان مقاله [English]

Design and construction of genetic construct expressing anti-EGFR VIII immunotoxin contains exotoxin A of Pseudomonas aeruginosa for glioblastoma cancer

نویسندگان [English]

  • maryam irani 1
  • MohammadReza Zolfaghari 2
  • Safar Farajnia 3
  • Razieh Nazari 4
  • Leila Rahbarnia 5

1 PhD student in microbiology, Islamic Azad University, Qom Branch, Qom, Iran

2 Department of Microbiology, Islamic Azad University, Qom Branch, Qom, Iran

3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Microbiology, Islamic Azad University, Qom Branch, Qom, Iran

5 Assistant Professor of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran

چکیده [English]

Introduction:
Cancer is one of the most common causes of human mortality in today's societies, and extensive efforts are being made to combat it. EGFRVIII is a tumor-specific antigen that is not observed in normal tissues, making it possible to target cancerous tissues without damaging normal tissues. ANTI-EGFRVIII-based immunotoxins can lead to the death of cancer cells that express an excessive amount of the EGFRVIII receptor by directing toxic components to these cells.
Objectives: The objective of the present study is to develop a new human immunotoxin against EGFRVIII (huscFv-PE38) by genetically fusing a single-chain human anti-EGFRVIII antibody with a truncated form of the Pseudomonas aeruginosa exotoxin A (PE) (PE38KDEL).
Materials and Methods:
The PE-38 exotoxin a fragment was amplified using PCR and attached to
pET22b-antiEGFRVIII huscFv. The reaction was confirmed by PCR and enzymatic digestion. The
immunotoxin was expressed in E. coli BL21 (plysS) and then purified using Ni-NTA chromatography.
After that, the purified immunotoxin reaction was evaluated using ELISA methods and MTT test.
Results:
The PCR and restriction digestion experiments confirmed the accuracy and integrity of the designed
immunotoxin structure. Purification of the expressed immunotoxin using Ni-NTA chromatography
column resulted in a highly pure, non-recombined immunotoxin with a molecular weight of 63 kDa
shown on SDS-PAGE gel.
Conclusion:
The results of this study demonstrate that the designed immunotoxin was successfully cloned, expressed, and purified, and can be considered as a promising candidate for the inhibition of EGFRVIII-positive cancer cells.

کلیدواژه‌ها [English]

  • Targeted Cancer Therapy
  • EGFRVIII
  • huscFv-PE38
  • Immunotoxin
  • Pseudomonas Exotoxin A
1.Hassanpour SH, Dehghani M. Review of cancer from
perspective of molecular. J Cancer Res Prac.
2017;4(4):127-9.
2.Leiter U, Garbe C. Epidemiology of melanoma and
nonmelanoma skin cancer—the role of sunlight. Adv
Exp Med Biol. 2008:89-103.
3.Seebacher N, Stacy A, Porter G, Merlot A. Clinical
development of targeted and immune based anti-
cancer therapies. J Exp Clin Cancer Res.
2019;38(1):1-39.
4.Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-
Pinelo S, Paz-Ares L. Current challenges in cancer
treatment. Clin Ther. 2016;38(7):1551-66.
5.Wee P, Wang Z. Epidermal growth factor receptor cell
proliferation signaling pathways. Cancers.
2017;9(5):52.
6.Sigismund S, Avanzato D, Lanzetti L. Emerging
functions of the EGFR in cancer. Mol Oncol.
2018;12(1):3-20.
7.Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M,
Ganti AK, Batra SK. Targeting the EGFR signaling
pathway in cancer therapy. Expert Opin Ther Targets
. 2012;16(1):15-31.
8.Rajaram P, Chandra P, Ticku S, Pallavi B, Rudresh K,
Mansabdar P. Epidermal growth factor receptor: Role
in human cancer. Indian J Dent Res. 2017;28(6):687.
9.Gan HK, Burgess AW, Clayton AH, Scott AM.
Targeting of a conformationally exposed, tumor-
specific epitope of EGFR as a strategy for cancer
therapy. Cancer Res. 2012;72(12):2924-30.
10.Shawler DL, Bartholomew R, Smith L, Dillman R.
Human immune response to multiple injections of
murine monoclonal IgG. J. Immun journal.
1985;135(2):1530-5.
11.Safdari Y, Farajnia S, Asgharzadeh M, Khalili M.
Antibody humanization methods–a review and
update. Biotechnol Gene. Eng Rev. 2013;29(2):175-
86.
12.Rutkowska A, Stoczyńska-Fidelus E, Janik K,
Włodarczyk A, Rieske P. EGFR VIII: an oncogene
with ambiguous role. J Oncol 2019; 109258.
13.Akbari B, Farajnia S, Zarghami N, Mahdieh N,
Rahmati M, Khosroshahi SA, et al. Design, expression
and evaluation of a novel humanized single chain
antibody against epidermal growth factor receptor
(EGFR). Protein Expr Purif 2016;127:8-15.
14.Kim SJ, Park Y, Hong HJ. Antibody engineering for
the development of therapeutic antibodies. Mol Cells.
2005;20(1).
15.Li YM, Hall WA. Targeted toxins in brain tumor
therapy. J Toxicol 2010;2(11):2645-62.
16.Havaei SM, Aucoin MG, Jahanian-Najafabadi A.
Pseudomonas exotoxin-based immunotoxins: over
three decades of efforts on targeting cancer cells with
the toxin. Front Oncol. 2021;11:781800.
17.Kreitman RJ. Immunotoxins for targeted cancer
therapy. AAPS J. 2006;8(3):532-51.
18.Dieffenbach M, Pastan I. Mechanisms of resistance
to immunotoxins containing pseudomonas exotoxin a
in cancer therapy. Biomolecules. 2020;10(7):979.
19.Allured VS, Collier RJ, Carroll SF, McKay DB.
Structure of exotoxin A of Pseudomonas aeruginosa at
3.0-Angstrom resolution. Proc Natl Acad Sci.
1986;83(5):1320-4.
20.Kreitman RJ, Hassan R, FitzGerald DJ, Pastan I.
Phase I trial of continuous infusion anti-mesothelin
recombinant immunotoxin SS1P. Clin. Cancer Res.
2009;15(16):5274-9.
21.Bao X, Chandramohan V, Reynolds RP, Norton JN,
Wetsel WC, Rodriguiz RM, et al. Preclinical toxicity
evaluation of a novel immunotoxin, D2C7-(scdsFv)-
PE38KDEL, administered via intracerebral
convection-enhanced delivery in rats. Invest New
Drugs. 2016;34(2):149-58.
22.Chandramohan V, Bao X, Yu X, Parker S, McDowall
C, Yu Y-R, et al. Improved efficacy against malignant
brain tumors with EGFRwt/EGFRVIII targeting
immunotoxin and checkpoint inhibitor combinations.
J Immunother Cancer. 2019;7(1):142.
23.Jahangir Langari, Majid Golkar, Hossein
Khanahmad, Morteza Karimipoor, Roghayeh
Arezumand, Ramazan Behzadi, et al. Cloning,Expression and Evaluation of Pseudomonas
Aeruginosa Exotoxin A. J Isfahan Med Sch 2014; 32
(294): 1110-8.
24.Falahatgar D, Farajnia S, Zarghami N, Tanomand A,
Khosroshahi SA, Akbari B, et al. Expression and
evaluation of huscfv antibody-pe40 immunotoxin for
target therapy of egfr-overexpressing cancers. Iran J
Biotechnol. 2018;16(4):1743.
25.Holliger P, Hudson PJ. Engineered antibody
fragments and the rise of single domains. Nat
Biotechnol. 2005;23(9):1126-36.
26.Sinacola JR, Robinson AS. Rapid refolding and
polishing of single-chain antibodies from Escherichia
coli inclusion bodies. Protein Expr Purif.
2002;26(2):301-8.
27.Passaro A, Jänne PA, Mok T, Peters S. Overcoming
therapy resistance in EGFR-mutant lung cancer. Nat
Cancer. 2021;2(4):377-91.
28.Petty R, Dahle-Smith A, Stevenson D, Osborne A,
Massie D, Clark C, et al. Gefitinib and EGFR gene
copy number aberrations in esophageal cancer. 2017.
29.Kozuki T. Skin problems and EGFR-tyrosine kinase
inhibitor. J clin oncology. 2016;46(4):291.
30.Widakowich C, de Castro Jr G, De Azambuja E,
Dinh P, Awada A. Side effects of approved molecular
targeted therapies in solid cancers. J. Oncol.
2007;12(12):1443-55.
31.Akbari B, Farajnia S, Zarghami N, Mahdieh N,
Rahmati M, Khosroshahi SA, et al. Construction,
expression, and activity of a novel immunotoxin
comprising a humanized antiepidermal growth factor
receptor scFv and modified Pseudomonas aeruginosa
exotoxin A. Anticancer Drugs. 2017;28(3):263-70.
32.Omidfar K, Rasaee M, Modjtahedi H, Forouzandeh
M, Taghikhani M, Golmakani N. Production of a
Novel Camel Single-Domain Antibody Specificfor
the Type III Mutant EGFR. Tumor Biol. 2004;25(5-
6):296-305.
33.Di Paolo C, Willuda J, Kubetzko S, Lauffer I,
Tschudi D, Waibel R, et al. A recombinant
immunotoxin derived from a humanized epithelial cell
adhesion molecule-specific single-chain antibody
fragment has potent and selective antitumor activity.
Clinical Cancer Res. 2003;9(7):2837-48.
34.Guo J-Q, You S-Y, Li L, Zhang Y-Z, Huang J-N,
Zhang C-Y. Construction and high-level expression of
a single-chain Fv antibody fragment specific for acidic
isoferritin in Escherichia coli. J Biotechnol.
2003;102(2):177-89.
35.Hexham JM, Dudas D, Hugo R, Thompson J, King
V, Dowling C, et al. Influence of relative binding
affinity on efficacy in a panel of anti-CD3 scFv
immunotoxins. Mol Immunol 2001;38(5):397-408.
36.Nakayashiki N, Yoshikawa K, Nakamura K, Hanai
N, Okamoto K, Okamoto S, et al. Production of a
single‐chain variable fragment antibody recognizing
type III mutant epidermal growth factor
receptor. Jpn J Cancer Chemother. 2000;91(10):1035-
43.
37.Bou Zerdan M, Moussa S, Atoui A, Assi HI.
Mechanisms of immunotoxicity: Stressors and
evaluators. Int J Mol Sci. 2021;22(15):8242.
38.Madhumathi J, Devilakshmi S, Sridevi S, Verma RS.
Immunotoxin therapy for hematologic malignancies:
where are we heading? Drug Discov Today.
2016;21(2):325-32.
39.Wu T, Zhu J. Recent development and optimization
of pseudomonas aeruginosa exotoxin immunotoxins
in cancer therapeutic applications.
Int Immunopharmacol. 2021;96:107759.
40.Onda M, Wang Q-c, Guo H-f, Cheung N-KV, Pastan
I. In vitro and in vivo cytotoxic activities of
recombinant immunotoxin 8H9 (Fv)-PE38 against
breast cancer, osteosarcoma, and neuroblastoma.
Cancer Res. 2004;64(4):1419-24.