تاثیر جزء بروتینی و DNA ترکیب DNA-گوندی بر تولید نیتروژ اکسیژن و رشد و بقاء ماکروفاژهای صفاقی

نویسنده‌گان:
سعید دانشمندی ۱، مینه حاجی مرادی ۱، مريم روهرداری ۲، افشین امیری ۳

۱بخش ایمنی شناسی، دانشگاه پزشکی، دانشگاه تربیت مدرس، تهران، ایران
۲بخش قارچ شناسی، دانشگاه پزشکی، دانشگاه تربیت مدرس، تهران، ایران
۳بخش پاتولوژی، بخش ایمنی شناسی، دانشگاه پدیده‌دان، دانشگاه علم پزشکی تهران، تهران، ایران

چکیده:
mقدم: ترکیب DNA-گوندی یک اجزای مکمل اصلی این است که به طیف وسیعی از سلول‌های جمجمه‌سازی ماکروفاژها حمله کرده و در این ناحیه مورد ارزیابی قرار گرفته است. ترکیب DNA-گوندی در مقدار مشخصی و نهایت فجع نیتروژ اکسیژن (NO) بر روی تولید نیتروژ اکسیژن و رشد و بقاء ماکروفاژهای صفاقی برسی می‌کند.

روش کار:

مقدار نیتروژ اکسیژن و رشد و بقاء ماکروفاژها در گروه‌ی سایوز مانند گروه‌ی منفی بوده و در نتیجه میزان نیتروژ اکسیژن و رشد و بقاء ماکروفاژها در گروه‌ی سایوز مانند گروه‌ی منفی به قرار نماید.

پایان‌ها:

باید توجه گردد که مطالعات نشان داده که جزء بروتینی ترکیب DNA-گوندی در مورد بقا و رشد ماکروفاژها می‌تواند تأثیر بیشتری بر تولید نیتروژ اکسیژن داشته باشد.

واژگان کلیدی:

توکسپولیپاسما گوندی، ماکروفاژ، نیتروژ اکسیژن، آزمون

مقدمه:
tرکیب DNA-گوندی در طول زمان در فرآیند آبزی‌سازی (Apicomplexa) به صورت یک پاتوژن فرمت طلب مهم یادگیری ترکیب DNA-گوندی می‌کند.

در مواردی که بیماری‌ها یا اعضای کارکنان ایجاد می‌دهند، با بروز بیماری‌های مختلف به طور معمول بیماری‌های ایمنی ایجاد شده می‌شود. در این بخش، تأثیر جزء بروتینی و DNA ترکیب DNA-گوندی بر تولید نیتروژ اکسیژن و رشد و بقاء ماکروفاژهای صفاقی\n
نویسنده‌سازی: دانشگاه علم پزشکی تهران، دانشگاه تربیت مدرس، دانشکده پزشکی، گروه ایمنی شناسی

daneshmandi@modares.ac.ir

 tiềmن: تلفن: ۰۲۱-۶۸۲۷۷۶۸۸، پیام‌کننده: ۰۲۱-۶۸۲۷۷۶۸۸، ایمیل: daneshmandi@modares.ac.ir

تاریخ دریافت: ۰۲۱-۰۷۰۸/۰۳/۲۱، تاریخ اصلاح: ۰۲۱-۰۷۰۸/۰۳/۲۱، تاریخ پذیرش: ۰۲۱-۰۷۰۸/۰۳/۲۱
افتتاح اجراه برای تولید و تحقیق پروتئین از این شرکت کیانان آلمان استاد. برای این کار، 100 میلی‌لیتر از بافر لیتار (جایی آن زیست‌شناسی و پژوهش‌های بین‌المللی اطالیه) و 10 میلی‌لیتر مخلوط کردن سوپرسینوس. کنونی‌ها به ترتیب 24 دقیقه 200 درجه سانتی‌گراد بود. 30 دقیقه روی داده مخلوط کردن سوپرسینوس آماده به 30 درجه سانتی‌گراد حاوی شد، پس از یک دقیقه 200 درجه سانتی‌گراد حداقل حاوی صفر. 200 درجه سانتی‌گراد مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیقه و 30 دقیقه روی داده مخلوط کردن سوپرسینوس به ترتیب 24 دقیق...
نتایج ازمون MTT و تست نیتریک اکسید مکاروکافازهای
مواده شده با بوتیونات های تحلیلی شده از تکسوپاسما قوندی در شکل 1 نشان داده شده است. مقایسه ایندکس تحریک (SI) (شاخصی از تعداد سلول ها) غلظت های مختلف آنتی رئو و ANOVA (ANalysis Of VAriance) با استفاده از آزمون آنالیز واریانس (ANOVA) و پروتئین با استفاده از آزمون آنالیز واریانس (ANOVA) در غلظت های مختلف (ANOVA، P<0.05) میزان تولید نیتریک اکسید در غلظت های مختلف پروتئین نیز نشان داده است (ANOVA، P<0.05).

نتایج ازمون MTT و تست نیتریک اکسید مکاروکافازها

در مواجهه با جزء DNA تکسوپاسما در شکل 2 آورده شده است. مقایسه با دسته آماده از بررسی آماری حاکی از این آزمون MTT و غلظت نیتریک تولید شده از مکاروکافازها در غلظت‌های مختلف را از DNA تحلیل شده از مکاروکافازها در مقایسه با یک دگرگونی نتیجه گرفته شد. نشان داده است (ANOVA، P<0.05)، لازم به ذکر است که میزان تولید نیتریک اکسید در غلظت 100 نانو گرم در میلی لیتر است. لازم به ذکر است که میزان تولید نیتریک در جزء DNA تحلیل شده از مکاروکافازها پروتئین با استفاده از آزمون آنالیز واریانس (ANOVA) در مقایسه با گروه کنترل منفی و گروه های مختلف آنتیزین و DNA-24 و پروتئین با طور معنی‌دار در نظر گرفته شد. (ANOVA، P<0.05)
شکل ۱: نتایج آزمون MTT و سنگشی نتیجه اکسیداسیون مکروفاژ‌های مواجهه شده با پروتئین‌های تخلیص شده از تونسوپلاسمای کونیدی، میانگین ± انحراف میزان ایندکس تحریک در غلظت ۲۰۰ نانومتر در میلی لیتر جنرالپروتئین به مول ماهی کاهش یافته است (P<.05).

شکل ۲: نتایج آزمون MTT و سنگشی نتیجه اکسیداسیون مکروفاژ‌های مواجهه شده با DNA ی تخلیص شده از تونسوپلاسمای کونیدی، میانگین ± انحراف میزان ایندکس تحریک در غلظت های مختلف ذخیره می‌باشد نشان دهنده (P<.05).
بحث و ترجمه گیری:

تکسومولاسما کوندی مدل‌گیری فراکری در دیانست که بسیاری از سلول‌های جانوران کونگری از جمله ماکروفازیها را بازده می‌کند. این اکسید در مقیاس باسلام به‌طور میانگین مقاومت کرده و بی‌پایه انگل در اثر اثرات سازگاری با واکنش‌های میکرو‌وریس و اکسیدانت‌های مجازی در سلول‌های زنده به‌عنوان مقدار اصلی این اکسید را به‌طور کامل تولید می‌کند. در مطالعه اقیانوسی اکسیدین گونه‌ها در سلول‌های زنده داده است که بسیاری از سلول‌های حیاتی که می‌توانند سلول‌های زنده را شکست دهند. اکسیدین گونه‌ها ممکن است با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند. با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند. با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند.

و چکیده تکسومولاسما کوندی مدل‌گیری فراکری در دیانست که بسیاری از سلول‌های جانوران کونگری از جمله ماکروفازیها را بازده می‌کند. این اکسید در مقیاس باسلام به‌طور میانگین مقاومت کرده و بی‌پایه انگل در اثر اثرات سازگاری با واکنش‌های میکرو‌وریس و اکسیدانت‌های مجازی در سلول‌های زنده به‌عنوان مقدار اصلی این اکسید را به‌طور کامل تولید می‌کند. در مطالعه اقیانوسی اکسیدین گونه‌ها در سلول‌های زنده داده است که بسیاری از سلول‌های حیاتی که می‌توانند سلول‌های زنده را شکست دهند. اکسیدین گونه‌ها ممکن است با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند. با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند. با میکرو‌وریس‌های میکرو‌وریسی می‌توانند سلول‌های زنده را شکست دهند.
References:


منابع:

Nitric Oxide Production and Growth and Survival of Peritoneal Macrophages

Daneshmandi S*, 1, Hajimoradi M1, Roudbar M2, Amari A3

1. Dept. of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2. Dept. of Mycology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3. Dept. of Immunology, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran

Journal of Jahrom University of Medical Sciences Vol. 8, No.1, Spring 2010

Abstract:

Introduction: Toxoplasma gondii is an obligate intracellular parasite that invades a wide variety of host cells including macrophages and survives within it. The parts of Toxoplasma that participate in the mechanism of its evasion from immune system and macrophage defenses are not completely defined. In this study, we evaluated the effect of protein and DNA Toxoplasma fractions on proliferation and nitric oxide production by peritoneal macrophages.

Material and Methods: The viability of macrophages was evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and the production of nitrite using Griess method.

Results: MTT reduction and hence the growth and viability of macrophages in a dose of 200 ng/ml was significantly lower than those of the negative control (P=0.022); in other lower doses of protein it was not statistically significant (P>0.05). Different doses of Toxoplasma protein fraction did not affect NO production (P>0.05). MTT assay and NO production in different doses of DNA fraction was not different (P>0.05).

Conclusion: According to the results of the present study, protein fraction of Toxoplasma has a suppressive effect on macrophage viability, but this effect is dose dependent. Protein fraction of Toxoplasma does not affect the amount of NO production by macrophage. The isolated DNA fraction of Toxoplasma did not influence the viability and NO production of macrophages. So, the ability of evasion of Toxoplasma gondii from macrophage defense is due to a component of its protein.

Keywords:
Toxoplasma gondii, Macrophage, Nitric Oxide, MTT assay

* Corresponding author. E-mail: daneshmandi@modares.ac.ir